Build/Draw/Write Algebra Concepts

(Note: Different problems may be represented in each progression.)
Add and Subtract Integers between -10 and 10 (7.NS.1d)

Build	Draw	Write
Sam's recent balance was -5 dollars Then he earned \$7, so his Grandma added \$7 to his recent balance What is Sam's new balance?	Subtract: a - b Add 4 zero pairs and take away 6 negatives Add the Opposite/Additive Inverse: a + (-b) $\begin{gathered} (-2)+(+6)=4 \\ +-\quad 2 \text { zero pairs leave } 4 \text { positives } \\ +++++ \end{gathered}$	Say: Add 6 positives to 8 negatives $(-8)+(6)=-2$ Think: 6 zero pairs and 2 more negatives

Multiply and Divide Integers between -10 and 10 (7.NS.2c)

Build	Draw	Write
"3 times negative 5 is equal to 3 groups of 5 negatives"	" 3 times negative 5 is equal to 3 groups of 5 negatives" $3(-5)=-\quad-15$	" 8 times negative 5 is equal to 8 groups of 5 negatives" $8(-5)=$

Build/Draw/Write Algebra Concepts

(Note: Different problems may be represented in each progression.)
Translate Algebraic Expressions Between Words and Symbols (6.EE.2a)

\begin{tabular}{|c|c|c|}
\hline Build \& Draw \& Write

\hline multiply add 2 times the quantity of (4 plus x)

\square
\square
\square $+x$
\square
\square
\square
\square $+x$

$$
2(4+x)
$$ \& The sum of $(x$ and 3$)$, times 2 \& The sum of $(x$ and 5$)$, times 3

$$
3(x+5)
$$

\hline
\end{tabular}

Evaluate Algebraic Expressions (6.EE.2c)

Build	Draw	Write
$2 x+3, \text { when } x=4$ $8+3=11$		Think: 1 more than 2 times 8 $2 x+1, \text { when } x=8$ $\begin{aligned} 2 x+1 & =2(8)+1 \\ & =16+1 \\ & =17 \end{aligned}$

DELTA
MATH

Build/Draw/Write Algebra Concepts
(Note: Different problems may be represented in each progression.)

Simplify Algebraic Expressions (6.EE.4)

Build	Draw	Write
$x^{2}+3 x+4+x-3$ \square $+1$ $+x^{2}$ \square \square \square \square \square $x^{2}+4 x+1$	$x^{2}+3 x+4+x-3$	Not Simplified $x^{2}+\underline{\underline{x}}+\underline{\underline{9}}+\underline{\underline{x}}-\underline{\underline{\underline{2}}}$ Simplified $\begin{gathered} \underline{x^{2}}+\underline{\underline{5 x+x}}+\underline{\underline{\underline{9-2}}} \\ x^{2}+6 x+7 \end{gathered}$

Solve 1 - Step Equations (6.EE.7)

Build/Draw/Write Algebra Concepts

(Note: Different problems may be represented in each progression.)
Add and subtract linear expressions (7.EE.1a)

Build	Draw	Write
$\begin{aligned} & 2 x+(4-5 x) \\ & 2 x+(4+-5 x)=-3 x+5 \end{aligned}$	$\begin{aligned} & 2 x+(5-4 x) \\ & 2 x+(5+-4 x)=-2 x+5 \end{aligned}$	$\begin{gathered} 2 x+(4-8 x) \\ 2 x+4+-8 x \\ 2 x+-8 x+4 \\ -6 x+4 \end{gathered}$ - Re-write the linear expression using the "add the opposite to subtract" strategy. - Inside the parentheses - Outside the parentheses - Group like terms - Combine like terms by adding or taking away zero pairs

Expand linear expressions (7.EE.1b)

Build/Draw/Write Algebra Concepts

(Note: Different problems may be represented in each progression.)

Factor linear expressions (7.EE.1c)

Solve equations with more than one step (7.EE.4a)

Build	Draw	Write	
Say and build the equation. $3 x+4=10$ Equation Mat 3 times what number plus 4 is equal to 10 Find the value of $3 x$-tiles by adding 4-1 tiles to both sidss and removinф all zero pairs. Then, create 3 equal groups to find $x=2$.	13 is equal to 4 times what number plus 1 ? $13=4 x+1$ ind the value of the x 's by creating 1 zero pair on both sides. hen, divide the 12 remaining positives into 4 equal aroups.	Algebraic Solution $\begin{aligned} 3 x+4 & =10 \\ -4 & -4 \\ \frac{3 x}{3} & =\frac{6}{3} \\ x & =2 \end{aligned}$	Explain Each Step Add - 4 to both sides to find the value of $3 x^{\prime}$ s. Divide both sides by 3 to find the value of each x.

