

Tier 3

Intervention Lessons

6.EE. 7

Learning Target: I will solve 1-step equations

Readiness for 7.EE.4a: Solve equations with more than one step
Planning Guide p. 3
Sessions 1 through 8: Lesson Resources p. 4-54
Independent Practice Game: "Solve 1-step Equations Match-up" p. 55-59
Classroom Poster: Questions for Solving Word Problems p. 60
Tier 1 Support Classroom Poster: Steps for Solving Word Problems p. 61

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step

Recommended Actions	
Beginning (5 min.)	$>$ Review the learning target with the whole group $>$ Ask each student to set a goal for the day based on their previous Quick Check Score > Have each student use a highlighter to plot their goal for the day
Middle (15 min.)	Model solving a word problem - "I do" (Sessions 1, 3 and 6 only) Guided Practice - "We do" Sessions 1 and 2: Solve 1-step equations (+ and x) with whole numbers using algebra tiles Session 3: Solve 1-step equations (+ and x) with whole numbers using drawings Session 4: Solve 1-step equations (x) with whole numbers and fractions using drawings Session 5: Solve 1-step equations (+ and x) with whole numbers and fractions using inverse operations
End (10 min.)	Bring the students back together. > Ask students to reflect on their progress towards the learning target - What did I learn today about solving 1-step equations? - How confident do you feel about solving 1-step equations on my own? (Thumbs up, down, or sideways) > Assess each student's progress using the next Quick Check form > Guide students to self-correct their Quick Check > Guide students to chart their progress in their Growth Chart - If not using Delta Math lessons, record the activity in the table > Collect each student's Quick Check and Growth Chart
After Session 6	Differentiation Options: - Allow students who met the learning goal to work independently while others do the guided practice during the next session - Exit students who met the learning goal for a third time Problem solve with a team to plan additional support for students who do not meet the learning goal within 8 sessions

Session 1: Modeling (I Do)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step

Greg had a mystery number of dollars before earning $\$ 5$ for mowing the lawn. Now, he has 9 dollars. The equation $x+5=9$ dollars can be used to represent how much he had, how much he earned and how much he has now. How much money did Greg have before mowing the lawn?

Session 1: Modeling (I Do - Visual Support)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg had a mystery number of dollars before earning \$5 for mowing the lawn. Now, he has 9 dollars. The equation $x+5=9$ dollars can be used to represent how much he had, how much he earned and how much he has now. How much money did Greg have before mowing the lawn?

Note: Color-coding is provided to help the interventionist make connections between the numbers, symbols and pictures. It may also help students who struggle to make similar connections.

Session 1: Modeling (I Do - Teacher Notes)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg had a mystery number of dollars before earning \$5 for mowing the lawn. Now, he has 9 dollars. The equation $x+5=9$ dollars can be used to represent how much he had, how much he earned and how much he has now. How much money did Greg have before mowing the lawn?

I am going to think aloud to model solving this problem.
Your job is to watch, listen, think and ask questions.

(Remove 5 " +1 tiles" from both sides of the equal sign.)
The remaining tiles show that x is definitely equal to 4 since I see 1 " $+x$ tile" on the left and 4 " +1 tiles" on the right. (Point to the remaining tiles on each side of the 2 vertical lines.)

Last, I need to make sure that my answer makes sense.
I found that Greg had 4 dollars before mowing the lawn. This makes sense because I modeled the situation using algebra tiles to represent the given equation.

M \triangle TH
Name \qquad Date \qquad

Learning Target: I will solve 1-step equations

Session 1: Guided Practice (We Do)

Materials:
> Algebra Tiles ($20+1$'s and $10+x$'s per student)
> Equation mat (1 per student)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, use algebra tiles to find the solution.

M \triangle TH \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 1: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation.

MATH \qquad
Learning Target: I will solve 1-step equations

Session 1: Guided Practice (We Do - Teacher Notes)

Materials:

$>$ Algebra Tiles (1 set on $p .13: 20+1 \mathrm{~s}$ and $16+x$'s per student)
> Equation mat (1 per student)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, use algebra tiles to find the solution.

Directions: Provide each student one set of positive tiles.
Note: $+x^{2}$ tiles are included, but will not be used the lessons for 6.EE.2a and 6.EE. 7

+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
+1	+1	+1	+1	+1	$+x$	$+\boldsymbol{x}$	$+x$	$+x$
+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
$+x^{2}$			$+x^{2}$		$+x^{2}$	$+x^{2}$	$+x^{2}$	$+x^{2}$
$+x^{2}$			$+x^{2}$		$+x^{2}$	$+x^{2}$	$+x^{2}$	$+x^{2}$
+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
+1	+1	+1	+1	+1	$+x$	$+x$	$+x$	$+x$
$+x^{2}$			$+x^{2}$		$+x^{2}$	$+x^{2}$	$+x^{2}$	$+x^{2}$
	$+x^{2}$		$+x^{2}$		$+x^{2}$	$+x^{2}$	$+x^{2}$	$+x^{2}$

(ल⿺辶TH Modeling \& Guided Practice Cards

Use for Problem 1 $x+4=6$	Use for Problem 2 $3 x=12$
Use for Problem 3 $4 x=8$	Use for Problem 4 $x+3=11$
Use for Problem 5 $x+5=8$	Use for Problem 6 $2 x=10$
Use for Problem 7 $x+6=10$	Use for Problem 8 $4 x=12$
Use for Problem 9 $3 x=15$	Use for Problem 10 $x+4=12$
Use for Modelling $x+5=9$	

Session 1: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)

Growth Chart

Name
Date

Learning Target: I will solve 1-step equations.
Goal: 5 out of 6 correct

Intervention	Date	Score
Session 1:		
Session 2:		
Session 3:		
Session 4:		
Session 5:		
Session 6:		
Session 7:		
Session 8:		

M \triangle TH
Name \qquad Date \qquad

Learning Target: I will solve 1-step equations

Session 2: Guided Practice (We Do)

Materials:
> Algebra Tiles ($20+1$'s and $10+x$'s per student)
> Equation mat (1 per student)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, use algebra tiles to find the solution.

M \triangle TH \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 2: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation.

Session 2: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)
 Session 3: Modeling (I Do)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step

Greg worked very hard and earned all A's on his report card. As a reward, his mom doubled his normal weekend computer gaming time to 8 hours. If x represents the amount of gaming time on a normal weekend, the equation $2 x=8$ can be used to find his normal gaming time. How much time does Greg normally get for weekend gaming?

Session 3: Modeling (I Do - Visual Support)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg worked very hard and earned all A's on his report card. As a reward, his mom doubled his normal weekend computer gaming time to 8 hours. If x represents the amount of gaming time on a normal weekend, the equation $2 x=8$ can be used to find his normal gaming time. How much time does Greg normally get for weekend gaming?

Note: Color-coding is provided to help the interventionist make connections between the numbers, symbols and pictures. It may also help students who struggle to make similar connections.

Session 3: Modeling (I Do - Teacher Notes)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step

Greg worked very hard and earned all A's on his report card. As a reward, his mom doubled his normal weekend computer gaming time to 8 hours. If x represents the amount of gaming time on a normal weekend, the equation $2 x=8$ can be used to find his normal gaming time. How much time does Greg normally get for weekend gaming?

I am going to think aloud to model solving this problem.
Your job is to watch, listen, think and ask questions.

First, it is important to know what the problem is about.
The problem is about Greg's weekend gaming time.

Second, I need to determine what I need to find.
I need to find how much time Greg normally gets for weekend gaming.

Third, I need to determine what I know.
I know Greg's mom doubled his normal gaming time and now he has $\mathbf{8}$ hours.
(Write "Doubled Gaming Time = Total".)
I also know that this situation can be modeled by the equation $2 x=8$.
(Write " $2 x=8$ " below the headings.)
Fourth, I need to figure out what I can try.
I am going to create a math drawing of algebra tiles to represent this situation.
I will draw 2 " $+x$ tiles" to represent the $2 x$... and 2 vertical lines to represent the equal sign...
(Draw 2 " $+x$ tiles and the 2 vertical lines below the equation.)

Next, I need to draw 8 "plus signs" as 2 equal groups corresponding to both " $+\boldsymbol{x}$ tiles".
(Draw the "plus signs" by alternating between each " $+x$ tile" as you count to 8.)
The math drawing shows that each x is equal to 4 since there are 4 "plus signs" in each group.
(Draw a loop around the bottom " $+x$ tile" and its corresponding "plus signs".)
The drawing shows the solution to $2 x=8$ is 4 .
(Write the solution " $x=4$ ".)

Last, I need to make sure that my answer makes sense.
I found that Greg normally gets 4 hours of gaming time per weekend. This makes sense because I modeled the situation using a math drawing of algebra tiles to represent the given equation.

M \triangle TH
Name \qquad Date \qquad

Learning Target: I will solve 1-step equations

Session 3: Guided Practice (We Do)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, use a math drawing to find the solution.

M \triangle TH \qquad
\qquad
Learning Target: I will solve 1-step equations

Session 3: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation using math drawings.

M \triangle TH \qquad

Session 3: Guided Practice (We Do - Teacher Notes)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, use a math drawing to find the solution.

1. What number plus 3 is equal to 12 ? $x+3=12$ $+x$ + + $x=12-3=9$ Draw $x+3=12$. Then, cross out 3 "plus signs" from both sides.	2. 3 times what number is equal to 18 ? $3 x=18$ Draw $3 x$ and align the 18 plus signs into 3 equal groups. Draw a loop around the bottom x and its corresponding plus signs to show the value of x.
3. 12 is equal to 4 times what number? Draw $4 x$ on the right side and align the 12 plus signs into 4 equal groups. Draw a loop around the bottom x and its corresponding plus signs to	4. 13 is equal to 5 plus what number? $13=5+x$ $x=13-5=8$ Draw $13=5+x$. Then, cross out 5 "plus signs" from both sides.

show the value of x.

Session 3: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)

M \triangle TH
Name \qquad Date \qquad

Learning Target: I will solve 1-step equations

Session 4: Guided Practice (We Do)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, use a math drawing to find the solution.

M \triangle TH \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 4: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation using math drawings.

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)

Session 5: Modeling (I Do)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg was not able to complete all of his chores. Therefore, he only earned $\frac{1}{4}$ of his allowance, which was $\$ 5$. If x represents his normal allowance, the equation $\frac{1}{4} \mathrm{x}=5$ can be used to find his normal allowance. How much is Greg's normal allowance?

Session 5: Modeling (I Do - Visual Support)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg was not able to complete all of his chores. Therefore, he only earned $\frac{1}{4}$ of his allowance, which was $\$ 5$. If x represents his normal allowance, the equation $\frac{1}{4} x=5$ can be used to find his normal allowance. How much is Greg's normal allowance?

$$
x=20
$$

Note: Color-coding is provided to help the interventionist make connections between the numbers, symbols and pictures. It may also help students who struggle to make similar connections.

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg was not able to complete all of his chores. Therefore, he only earned $\frac{1}{4}$ of his allowance, which was $\$ 5$. If x represents his normal allowance, the equation $\frac{1}{4} x=5$ can be used to find his normal allowance. How much is Greg's normal allowance?

I am going to think aloud to model solving this problem.
Your job is to watch, listen, think and ask questions.

First, it is important to know what the problem is about.
The problem is about Greg's allowance.

Second, I need to determine what I need to find.
I need to find how much money Greg normally gets.

Third, I need to determine what I know.
I know he only earned $\$ 5$, which was $\frac{1}{4}$ of his normal allowance.
(Write " $\frac{1}{4}$ of Allowance = Amount Earned".)
I also know that this situation can be modeled by the equation $\frac{1}{4} x=5$. (Write the equation below the labels.)
Fourth, I need to figure out what I can try.
I am going to use a math drawing to model the situation.
(Draw the $+x$ tile, 2 vertical lines and 5 plus signs under the equation.)
My picture is not accurate yet...I need to represent 1 quarter of $x .$. .
(Point to the 1 quarter in the equation.)
So I will separate the $+x$ tile into 4 equal parts and shade 1 fourth of it.
(Draw 3 vertical lines to create fourths...then shade the first section.)
To find his normal monthly allowance, I need to find the value of the whole x.
(Point each of the four sections of the " $+x$ tile".)
In order to make it easier to find the whole, I am going to redraw the x tile with 4 equal parts.
(Draw another x-tile separated into fourths, below the mat drawing.)
Since each part is one-quarter of the whole, I am going to write " $1 / 4 \boldsymbol{x}^{\text {" }}$ above each part.
(Write " $1 / 4 \mathrm{x}^{\prime \prime}$ above each part of the " $+x$ tile".)
The original drawing shows that " $1 / 4 x$ " is equal to 5 , so I am going to write " 5 " in each of the 4 sections.
(Write " 5 " in the 4 sections of the " $+x$ tile".)
Now I can see that the whole value of \boldsymbol{x} is equal to 20.
(Point to the 4 groups of 5 and write $x=5 \cdot 4=20$ below the math drawing.)
Last, I need to make sure that my answer makes sense.
I found that Greg normally gets \$20 for allowance. This makes sense because I modeled the situation using algebra tiles to represent the given equation.
$\mathrm{M} \triangle \mathrm{TH}$ \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 5: Guided Practice (We Do)

We Do Together: (Teacher Actions)
$>$ Translate the equation into a phrase with meaning. Then, complete the math drawing to find the solution.

1. "1 third of what number is equal to 7?" $\frac{1}{3} x=7$ + +	2. $\frac{1}{4} x=2$ $\square+x$
3.	4. $\frac{3}{4} x=15$ $+++++$ $+\boldsymbol{+ + +}+$ $+\boldsymbol{+ + +}$

$M \Delta T H$ \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 5: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation.

5. " 1 fourth of what number is equal to 7 ?" $\frac{1}{4} x=7$ $+\mid$	6.
7. $6=3 x$	8.
9.	10.

M \triangle TH \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 5: Guided Practice (We Do - Teacher Notes)

We Do Together: (Teacher Actions)
$>$ Translate the equation into a phrase with meaning. Then, complete the math drawing to find the solution.

1. 1 third of what number is equal to 7 ? $\frac{1}{3} x=7$ $x=7 \cdot 3=21$	2. 1 fourth of what number is equal to 3? $\frac{1}{4} x=2$ $x=2 \cdot 4=8$
3. 2 fifths of what number is equal to 8 ? $8=\frac{2}{5} x$ $8=\frac{2}{5} x \rightarrow 4=\frac{1}{5} x \rightarrow x=4 \cdot 5=20$	4. 3 fourths of what number is equal to 15 ?

Session 5: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)

$\mathrm{M} \triangle \mathrm{TH}$ \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 6: Guided Practice (We Do)

We Do Together: (Teacher Actions)
> Translate the equation into a phrase with meaning. Then, complete the math drawing to find the solution.

1. " 1 third of what number is equal to 7?" $\frac{1}{3} x=8$ + +	2. $\frac{1}{4} x=3$
3.	4. $\frac{3}{4} x=18$ $+\boldsymbol{+ + + +}+$ $+\boldsymbol{+ + + +}+$ $+\boldsymbol{+ + + +}$

$M \Delta T H$ \qquad
\qquad

Learning Target: I will solve 1-step equations

Session 6: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation.

5. " 1 fourth of what number is equal to 7 ?" $\frac{1}{4} x=9$ [和	6.
7. $12=3 x$	8.
9.	10.

Session 6: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)

Name
Date \qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)
 Session 7: Modeling (I Do)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg showed his mom how to solve the equation $\frac{3}{4} x=15$ using a drawing. His mom appreciated learning a new solution method and said, "when I was your age, we were taught to solve equations using inverse operations. We would find the value of x by "undoing" any operations on it. Since x is being multiplied by 3 fourths, we would "undo" multiplication by dividing both sides of the equal sign by 3 fourths...like this..."

Find 1 difference and 1 similarity between the two methods.

$$
\begin{aligned}
& \text { Greg's Drawing } \\
& \begin{array}{c}
\frac{3}{4} x=15 \\
\begin{array}{|l|l|l|l|}
\hline 5 & 5 & 5 & 5 \\
\hline
\end{array} \\
\hline+x-t i l e \\
x=15 \cdot \frac{4}{3}=20
\end{array}
\end{aligned}
$$

Greg's Mom's solution using
 inverse operations

$$
\begin{array}{r}
\frac{3}{4} x=15 \\
\div \frac{3}{4} \div \frac{3}{4}
\end{array}
$$

$$
1 \cdot x=\frac{\not 2 \cdot 5}{\frac{15}{1}} \cdot \frac{4}{z}
$$

$$
x=20
$$

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step
Greg showed his mom how to solve the equation $\frac{3}{4} x=15$ using a drawing. His mom appreciated learning a new solution method and said, "when I was your age, we were taught to solve equations using inverse operations. We would find the value of x by "undoing" any operations on it. Since x is being multiplied by 3 fourths, we would "undo" multiplication by dividing both sides of the equal sign by 3 fourths...like this..."

Find 1 difference and 1 similarity between the two methods.

*To divide by a fraction, we can multiply by its reciprocal. (See $7^{\text {th }}$ Grade - RS 1-6.NS.1-Session 4)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step

Find 1 difference and 1 similarity between the two methods.

I am going to think aloud to model solving this problem.
Your job is to watch, listen, think and ask questions.

First, it is important to know what the problem is about.
The problem is about Greg and his mom solving an equation two different ways.

Second, I need to determine what I need to find.
I need to find 1 difference and 1 similarity between the two solution methods.

Third, I need to determine what I know.
I know that both Greg and his mom solved the equation $\frac{3}{4} x=15$ using 2 different solution methods.
(Point to both equations and write "Operations that undo each other".)
Fourth, I need to figure out what I can try.

Also, I see the equation " $x=15 \cdot \frac{4}{3}$ " in both solution methods.
(Write the word "Similar" and draw arrows pointing to the both equations " $x=15 \cdot \frac{4}{3}$ ".)
I think Greg's mom used the "multiply by the reciprocal" method for dividing fractions because 15 divided by 3 fourths became 15 times 4 thirds.
(Point to the " $\div \frac{3}{4}$ " and then the "15 • $\frac{4}{3}$ ".)
She wrote $1 \cdot x \ldots$ (Point to the 1)...since any number divided by itself is equal to 1.
And, she turned the whole number, 15, into an equivalent fraction by making the denominator 1.
Then, she rewrote the 15 as two of its factors... 3 and 5...(Point to the $3 \cdot 5) \ldots$
so that she could cancel the common factors...3...since 3 thirds is equal to 1 whole. (Point to the $3 \cdot 5$)
Therefore, Greg's mom multiplied 5 times 4 to get her solution. (Point to the $5 \cdot 4$ and 20.)

Last, I need to make sure that my answer makes sense.
I found that Greg normally gets $\boldsymbol{\$ 2 0}$ for allowance. This makes sense because they both used the same solution equation to get their answers... and the only difference was that Greg used his understanding by drawing a picture and his mom used her understanding by using the inverse operations solution method.

M \triangle TH
Name \qquad Date \qquad

Learning Target: I will solve 1-step equations

Session 7: Guided Practice (We Do)

We Do Together: (Teacher Actions)
$>$ Translate the equation into a phrase with meaning. Then, find the value of x using the "inverse operations" solution method.

Name \qquad Date \qquad
Learning Target: I will solve 1-step equations

Session 7: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation.

7.	$4 x=12$	

\qquad

Learning Target: I will solve 1-step equations

Session 7: Guided Practice (We Do - Teacher Notes)

We Do Together: (Teacher Actions)

$>$ Translate the equation into a phrase with meaning. Then, find the value of x using the "inverse operations" solution method.

2 times what number is equal to 10 ?
What number plus 7 is equal to 10 ?

1.	2. $\begin{array}{rr} & \begin{array}{r} x+7=10 \\ -7 \\ \hline \end{array} \\ \begin{array}{l} \text { Undo addition } \\ \text { by subtracting } \end{array} & \text { Maintain Equality } \\ \cline { 2 - 2 } \end{array}$
	4. What number plus 3 and 1 fourth is equal to 9 ? $\begin{array}{r} x+3 \frac{1}{4}=9 \\ \begin{array}{r} x=8 \frac{4}{4} \\ \begin{array}{r} \text { Undo addition } \\ \text { by subtracting } \end{array} \\ \begin{array}{r} -3 \frac{1}{4}-3 \frac{1}{4} \end{array} \\ \begin{array}{c} \text { Ungroup one whole } \\ \text { as } 4 \text { fourths } \end{array} \\ \\ x=5 \frac{3}{4} \end{array} \end{array}$
5. 9 is equal to what number plus 4? $\begin{aligned} & 9=x+4 \\ & \text { Maintain Equality } \begin{array}{r} 9 \\ -4 \end{array} \\ & 5=x \end{aligned}$	9 is equal to 3 fourths of what number?

Session 7: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)

M \triangle TH
Name \qquad Date \qquad

Learning Target: I will solve 1-step equations

Session 8: Guided Practice (We Do)

We Do Together: (Teacher Actions)
$>$ Translate the equation into a phrase with meaning. Then, find the value of x using the "inverse operations" solution method.

M \triangle TH \qquad
\qquad
Learning Target: I will solve 1-step equations

Session 8: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)
> Students take turns leading to solve each 1-step equation.

7.	$4 x=24$	

Session 8: Self-Reflection

Learning Target: I will solve 1-step equations

Briefly discuss student responses
$>$ What did I learn today about solving 1-step equations?
> How confident do I feel about solving 1-step equations on my own? (Thumbs up, down, or sideways)
\qquad

Learning Target: I will solve 1-step equations.

Directions: Solve each equation for x. (Work time: 4 minutes)

Independent Practice (You Do)

Learning Target: I will solve 1-step equations
Readiness for solving equations with more than one step

Title of Game: Play "Solve 1-step Equations Match-up!"
Number of Players: 2
Objective: To match all of your "Equation" cards to the equivalent "Solution" cards.

Materials:

> 1 set of Equation and Solution cards per group
> 1 recording sheet per player

Set-up:

> Deal all 12 Equation cards face down in a row.
> Deal 6 Solution cards face up to each player.

Directions:

> Player 1 goes first

- Take a card from the row of face down Equation cards and turn it face up
- Write the problem on the recording sheet
- And, find the answer in simplest form
$>$ If Player 1 has the Solution card, place it face up on top of the Equation card, take both cards and say: Example " 2 times what number is equal to $10 . . .1$ undid multiplying by 2 with dividing by 2 "
> If Player $\mathbf{1}$ does not have the answer to the Equation card, turn the Equation card back over.
> Players $\mathbf{1}$ and $\mathbf{2}$ alternate turns. The winner is the first player to match all 5 of their cards.

Equation Cards (Set A)

Storage Suggestions: Copy the Equation (Set A) cards and Solution (Set A) cards in two different colors.
Store 1 set of each in a sealable bag for each pair of students.

Solution Cards (Set A)

Storage Suggestions: Copy the Equation (Set A) cards and Solution (Set A) cards in two different colors. Store 1 set of each in a sealable bag for each pair of students.

Equation Cards (Set B)

Storage Suggestions: Copy the Equation (Set B) cards and Solution (Set B) cards in two different colors.
Store 1 set of each in a sealable bag for each pair of students.

Solution Cards (Set B)

Storage Suggestions: Copy the Equation (Set B) cards and Solution (Set B) cards in two different colors.
Store 1 set of each in a sealable bag for each pair of students.

$\begin{aligned} & \mathbf{N}^{-1} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$		Set B		Set B	$x=8 \frac{3}{4}$	Set B	$x=7 \frac{1}{4}$	Set B
					$x=48$	Set B	$x=16$	Set B
	$x=12$	Set B	$x=10 \frac{2}{3}$	Set B	$x=5$	Set B	$x=21$	Set B
$\begin{aligned} & \stackrel{\infty}{ \pm} \\ & \stackrel{\sim}{\omega} \end{aligned}$	$x=9$	Set B	$x=8$	Set B	$x=8 \frac{3}{4}$	Set B	$x=7 \frac{1}{4}$	Set B
					$x=48$	Set B	$x=16$	Set B
	$x=12$	Set B	$x=10 \frac{2}{3}$	Set B	$x=5$	Set B	$x=21$	Set B

(HiLITH Questions for Solving Word Problems

Q_{1}	What is the problem about?
Q_{2}	What do I need to find?
Q_{3}	What do I know?
Q_{4}	What can I try?
Does my answer make sense?	

Q1. What is the problem about?

Q2. What do I need to find?

Q3. What do I know?

Q4. What can I try?
Q_{5}. Does my answer make sense?

