Name \qquad

$6^{\text {th }}$ Grade Readiness: Progress Assessment

Questions 1-3: Evaluate the expression.
1.

$$
5 \times(3+4)
$$

12	60	19	35

\qquad
2.

$$
9-(5-2)
$$

$2 \quad 4 \quad 7 \quad 6$
\qquad
3.

$$
(7-2) \times(6+2)
$$

$72 \quad 20 \quad 13 \quad 40$
Answer: \qquad

STOP
Please stop, put your pencil down and wait for the next directions.
\qquad

6 ${ }^{\text {th }}$ Grade Readiness: Progress Assessment
(continued)

Questions 4-6: Multiply the multi-digit numbers.

\qquad

6 ${ }^{\text {th }}$ Grade Readiness: Progress Assessment
(continued)

Questions 7-9: Divide the multi-digit numbers.

7. $5 \longdiv { 1 7 0 5 }$	8. $3 \longdiv { 7 8 4 2 }$
9. $1 2 \longdiv { 2 1 4 8 }$	Please stop, put your pencil down and wait for the next directions.

\qquad

6 ${ }^{\text {th }}$ Grade Readiness: Progress Assessment
(continued)

Questions 10-12: Add and subtract the mixed numbers.

\qquad
(continued)

Questions 13-15: Multiply the fractions.
13.

$$
\frac{1}{4} \times \frac{3}{8}
$$

$3 / 32$
14.

$$
\frac{6}{7} \times \frac{5}{6}
$$

15.

$$
\frac{3}{4} \times \frac{2}{7}
$$

Please stop, put your pencil down and wait for the next directions.
\qquad

6 ${ }^{\text {th }}$ Grade Readiness: Progress Assessment (continued)

Questions 16-18: Divide the fractions by whole numbers.
16.

$$
\frac{1}{6} \div 2
$$

$1 / 12$	$1 / 3$	12	3

17.

$$
\frac{1}{3} \div 9
$$

$1 / 27$	27	3	$1 / 3$

18.

$$
\frac{1}{8} \div 2
$$

Please stop, put your pencil down and wait for the next directions.
\qquad

6 ${ }^{\text {th }}$ Grade Readiness: Progress Assessment (continued)

Questions 19-21: Write the answer to each division problem.
19.

$$
8 \div \frac{1}{4}
$$

32	$1 / 32$	2	$1 / 2$

20.

$$
6 \div \frac{1}{2}
$$

12	$1 / 12$	3	$1 / 3$

21.

$$
9 \div \frac{1}{3}
$$

\qquad

