

8th Grade Tier 2 Intervention Lessons

Readiness Standard 4 - 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for 7.EE.4a: Solve equations with more than one step

Table of Contents

Session 1: Planning Guide	p. 4
Session 1: Re-engagement Lesson Resources	p. 5-10
Sessions 2 through 8: Planning Guide	p.11
Sessions 2 through 8: Lesson Resources	p. 12-54
Independent Practice Game: "Expand Linear Expressions Match-up"	p. 55-59
Classroom Poster: Questions for Solving Word Problems	p. 60
Tier 1 Support Classroom Poster: Steps for Solving Word Problems	p. 61

IES Recommendations for Tier 2 and 3 intervention lessons:

 Instructional materials for students receiving interventions should focus intensely on in-depth treatment of whole numbers in kindergar- ten through grade 5 and on rational numbers in grades 4 through 8. These materials should be selected by committee. 	Low
 Instruction during the intervention should be explicit and systematic. This includes providing models of proficient problem solving, verbalization of thought processes, guided practice, corrective feedback, and frequent cumulative review. 	Strong
4. Interventions should include instruction on solving word problems that is based on common underlying structures.	Strong
 Intervention materials should include opportunities for students to work with visual representations of mathematical ideas and interven- tionists should be proficient in the use of visual representations of mathematical ideas. 	Moderate
6. Interventions at all grade levels should devote about 10 minutes in each session to building fluent retrieval of basic arithmetic facts.	Moderate
7. Monitor the progress of students receiving supplemental instruction and other students who are at risk.	Low
8. Include motivational strategies in tier 2 and tier 3 interventions.	Low

(Institute of Educational Sciences, Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools, 2009, p. 6)

Gradual release of responsibility model

Focus Lesson "I do it" Guided Instruction Collaborative "You do it together" Independent "You do it alone"

Figure 1

(Dr. Douglas Fisher, Effective Use of the Gradual Release of Responsibility Model)

Planning Guide: Session 1

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

Recommended Actions					
Beginning (15 min.)	 Review the readiness standard with the intervention group using the Guided Review Introduce the learning target and why it is important for future learning Read each question on the Guided Review and ask students to share what they remember from the previous school year. 				
Middle (5 min.)	 Ask students to <u>reflect</u> on their progress towards the learning target What did I remember about the learning target? What did I learn today about the learning target? How confident do I feel about doing the learning target on my own? 				
End (10 min.)	 Assess each student's progress using Quick Check – Form A Guide students to self-correct their Quick Check – Form A Guide students to chart their progress by recording the date and Quick Check score in their Growth Chart Collect each student's Quick Check and Growth Chart 				
After	 Create sub-groups to differentiate the middle of sessions 2 through 8 Group 1 – Include students who <u>did not</u> meet the learning goal Group 2 – Include students who met or exceeded the learning goal 				

8th Grade Fall Guided Review

Readiness Standard 4 - 7.EE.1b

Name___ Date

Learning Target: I will expand linear expressions.

1.

Find the equivalent expanded expression:

$$3(x + 2)$$

- \bigcirc 3x + 2 \bigcirc 3x + 6 \bigcirc 6x \bigcirc x + 6

2.

Find the equivalent expanded expression:

$$7(6x + 3)$$

- \circ 42x + 21 \circ 42x + 3 \circ 63x

- \circ 6x + 21

3.

$$4(2x + 8) + x$$

- 0.9x + 8 0.8x + 32 0.41x
- \circ 9x + 32

8th Grade Winter Guided Review

Readiness Standard 4 - 7.EE.1b

Name____ Date

Learning Target: I will expand linear expressions.

1.

Find the equivalent expanded expression:

$$4(x + 6)$$

- \circ 4x + 24 \circ 4x + 6 \circ 24x \circ x + 24

2.

Find the equivalent expanded expression:

$$8(5x + 2)$$

- 0.40x + 2. 0.40x + 16. 0.56x. 0.5x + 16.

3.

$$3(4x+6)+x$$

- \circ 13x + 6 \circ 12x + 18 \circ 31x \circ 13x + 18

8th Grade Spring Guided Review

Readiness Standard 4 - 7.EE.1b

Name	Date

Learning Target: I will expand linear expressions.

1.

Find the equivalent expanded expression:

$$7(x + 3)$$

- \circ 7x + 3 \circ 7x + 21 \circ 21x

- $\circ x + 21$

2.

Find the equivalent expanded expression:

$$4(6x + 2)$$

- \circ 6x + 8
- \circ 24x + 2 \circ 32x
- \circ 24x + 8

3.

$$5(2x+4)+x$$

- 0.10x + 20 0.11x + 20 0.31x
- \circ 11x + 4

Session 1: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

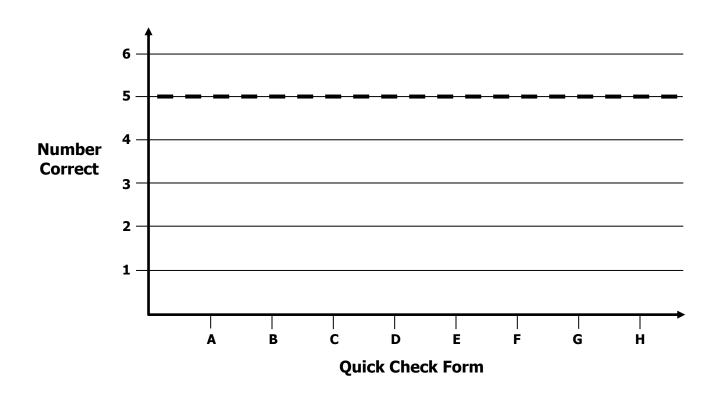
Briefly discuss student responses

- ➤ What did I remember about expanding algebraic expressions?
- What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form A

8th Grade – Readiness Standard 4 – 7.EE.1b

Name_			Date					
	Learning Target: I will expand linear expressions.							
1.	tions: Write the equivalent expanded expression. (Work time: 4 minutes) 2.							
	9(x + 3)		6(<i>x</i> – 4)					
3.		4.						
	5(9 <i>x</i> + 2)		7(3x - 6)					
5.		6.						
	8(4x + 7) + x		4(7x + 3) - 6x					


Growth Chart

8th Grade – Readiness Standard 4 – 7.EE.1b

Name	Date
1 Natific	Date

Learning Target: I will expand linear expressions.

Goal: 5 out of 6 correct

Intervention	Date	Score
Guided Review		

Planning Guide: Sessions 2 Through 8

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

	Recommended Actions							
Beginning (5 min.)								
Middle (15 min.)	Group 1: Students who scored below the learning goal on the previous Quick Check.	Group 2: (Students who met the learning goal)						
	 Model solving a word problem – "I do" Guided Practice – "We do" 	Independent practice – "You do alone"						
	Session 2: Expand linear expressions using algebra tiles.	Activity 1: "Expand Linear Expressions Match-up"						
	Session 3: Expand linear expressions using math drawings. Session 4: Expand linear expressions by distributing and combining like-terms.	(Look for additional activities in 7 th grade core instruction resources.)						
End (10 min.)								
After								

Session 2: Modeling (I Do)

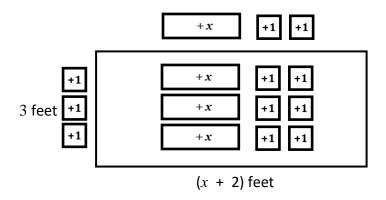
8th Grade – Readiness Standard 4 – 7.EE.1b

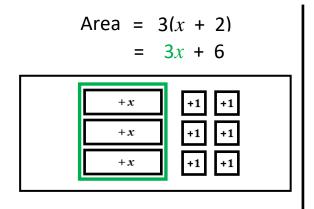
Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

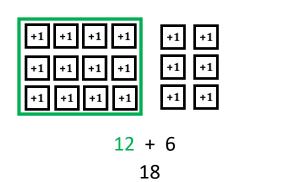
Blake needs to pave a rectangular shaped sidewalk. The width of the sidewalk is 3 feet and the length is 2 feet longer than an unknown number, x. The area can be calculated by multiplying the algebraic expression: 3(x + 2). Find the expanded expression for the area of the sidewalk. Then, find the area of the sidewalk when the unknown, x, is equal to 4 feet.

3 feet	
	(x + 2) feet


Session 2: Modeling (I Do – Visual Support)


8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions


Readiness for solving equations with more than one step

Blake needs to pave a rectangular shaped sidewalk. The width of the sidewalk is 3 feet and the length is 2 feet longer than an unknown number, x. The area can be calculated by multiplying the algebraic expression: 3(x + 2). Find the expanded expression for the area of the sidewalk. Then, find the area of the sidewalk when the unknown, x, is equal to 4 feet.

When x = 4 feet, the area is 18 square feet

Note: Color-coding is provided to help the interventionist make connections between the numbers, symbols and pictures. It may also help students who struggle to make similar connections.

Session 2: Modeling (I Do - Teacher Notes)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

Blake needs to pave a rectangular shaped sidewalk. The width of the sidewalk is 3 feet and the length is 2 feet longer than an unknown number, x. The area can be calculated by multiplying the algebraic expression: 3(x + 2). Find the expanded expression for the area of the sidewalk. Then, find the area of the sidewalk when the unknown, x, is equal to 4 feet.

I am going to think aloud to model solving this problem.

Your job is to watch, listen, think and ask questions.

First, it is important to know what the problem is about.

The problem is about a sidewalk Blake needs to pave.

Second, I need to determine what I need to find.

I need to find the expanded expression for the area of the sidewalk. Then, the area when the unknown, x, is equal to 4 feet.

Third, I need to determine what I know.

I know the shape of the sidewalk is a rectangle and its area can be represented using the algebraic expression 3 times (x + 2). (Write "Area = 3(x + 2)" below the drawing and point to each side length "3" and "x + 2".)

Fourth, I need to figure out what I can try.

I am going to use algebra tiles to help me model this problem.

I will place 3 positive 1-tiles next to the width and an x-tile and 2 positive 1-tiles above the length.

(Place the algebra tiles next to each side.)

I can model the area with 3 groups of tiles that represent x + 2. (Place the 3 groups of algebra tiles inside the rectangle.)

There are 3 positive *x*-tiles and 6 positive 1-tiles.

(Point to the 3 x-tiles and 6 positive 1-tiles and write "= 3x + 6" below "3(x + 2)".)

The expanded expression for the perimeter is 3x + 6.

When x is equal to 4 feet...I am going to replace each positive x-tile with 4 positive 1-tiles.

(Write "When x = 4 feet" and replace the tiles.)

Now I have 4, 8, 12... (Point to the groups of 4 while skip counting... and write "12" below the tiles.)

And 12 plus the 6 is 18 positive 1-tiles. (Point to the group of 6 and write "+6", "18" and "the area is 18 feet")

When x is equal to 4, the area of the sidewalk is 18 square feet.

Last, I need to make sure that my answer makes sense.

This makes sense because I modeled each side length using algebra tiles. Then, I multiplied them by creating equal groups to find the expanded expression. Then, I replaced each x tile with 4 positive 1 tiles to find the actual area.

Name _____ Date ____

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 2: Guided Practice (We Do)

Materials:

 \triangleright Algebra Tiles (1 set from p. 13 and p. 14: 20 +1-tiles, 20 -1-tiles, 16 +x-tiles and 16 +x-tiles per student)

> Multiplication mat (1 per student)

We Do Together: (Teacher Actions)

> Say, build and expand each linear expression using multiplication.

1.		2.	
	4(x + 3)		3(x + 5) + 2x
_			
3.	2(3x - 1)	4.	2(-3x - 1) + 4
	2(3x - 1)		2(-5x - 1) + 4

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 2: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

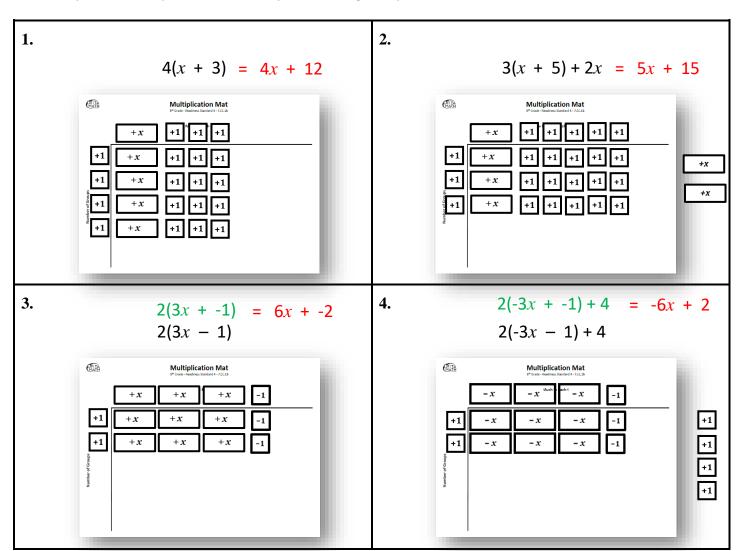
> Students take turns leading to expand each linear expression using multiplication.

	6.
3(<i>x</i> + 4)	4(x + 3)
	8.
5(2 <i>x</i> + 3) + 1	5(2x - 3)
	10.
3(-x + 2)	3(-2x - 4) - 1

Name _____ Date ____

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b


Session 2: Guided Practice (We Do – Teacher Notes)

Materials:

- \triangleright Algebra Tiles (1 set from p. 13 and p. 14: 20 +1-tiles, 20 -1-tiles, 16 +x-tiles and 16 +x-tiles per student)
- Multiplication mat (1 per student)

We Do Together: (Teacher Actions)

> Say, build and expand each linear expression using multiplication.

- Re-write the linear expression using the "add the opposite to subtract" strategy.
- Expand by multiplying by creating equal groups

Algebra Tiles (2 sets of positive tiles)

 8^{th} Grade - Readiness Standards 3, 4, 5 and 6 – 7.EE.1a, 7.EE.1b, 7.EE.1c, 7.EE.4

Directions: Provide each student one set of positive and negative tiles.

Note: $+x^2$ tiles and $-x^2$ tiles are included, but will not be used in 7.EE.1a

								but will not be used in 7.EE.1a		
	+1	+1	+1	+1	+1	+ x	+x	+x	+ x	
	+1	+1	+1	+1	+1	+x	+x	+x	+ x	
	+1	+1	+1	+1	+1	+ x	+ x	+ x	+ x	
	+1	+1	+1	+1	+1	+x	+x	+x	+ x	
	$+x^{2} + x^{2}$ $+x^{2}$ $+x^{2}$		+ x ²	+ x ²	+ x ²	+ x ²				
<u>1</u>			+ x ²	+ x ²	+ x ²	+ x ²				
	+1	+1	+1	+1	+1	+ x	+ x	+ x	+ x	
	+1	+1	+1	+1	+1	+ x	+ x	+x	+ x	
	+1	+1	+1	+1	+1	+ x	+ x	+ x	+ x	
	+1	+1	+1	+1	+1	+x	+x	+ x	+ x	
	+ x ²			+ x ²	2	+ x ²	+ x ²	+ x ²	+ x ²	
	+ x ²			+ x	2	+ x ²	+ x ²	+ x ²	+ x ²	

Algebra Tiles (2 sets of negative tiles)

8th Grade - Readiness Standards 3, 4, 5 and 6 – 7.EE.1a, 7.EE.1b, 7.EE.1c, 7.EE.4

Directions: Provide each student one set of positive and negative tiles.

Note: $+x^2$ tiles and $-x^2$ tiles are included, but will not be used in 7.EE.1a

								but will not be u	3CU III 7.LL.1U
	-1	-1	-1	-1	-1	- x	- x	- x	- x
	-1	-1	-1	-1	-1	- x	- x	- x	- x
	-1	-1	-1	- 1	-1	- x	- x	- x	- x
	-1	-1	-1	-1	-1	- x	- x	- x	- x
		- x ²		- x	2	- x ²	- x ²	- x ²	- x ²
<u>/</u>		$-x^2$		- x	2	- x ²	- x ²	- x ²	- x ²
	-1	-1	-1	-1	-1	- x	-x	- x	- x
	-1	-1	- 1	- 1	-1	- x	- x	- x	- x
	-1	-1	- 1	-1	-1	- x	- x	- x	- x
	-1	-1	-1	-1	-1	- x	- x	- x	- x
		- x ²		- x	2	- x ²	- x ²	- x ²	- x ²
		- x ²		- x	2	- x ²	- x ²	- x ²	- x ²

Modeling & Guided Practice Cards

8th Grade - Readiness Standard 4 - 7.EE.1b

Use for Problem 1	Use for Problem 2
4(x + 3)	2(x + 5) + 2x
Use for Problem 3	Use for Problem 4
2(3x - 1)	2(-3x - 1) + 4
Use for Problem 5	Use for Problem 6
3(x + 2)	2(x + 3)
Use for Problem 7	Use for Problem 8
5(2x + 3) + 1	5(2x - 3)
Use for Problem 9	Use for Problem 10
3(-x + 2)	3(-2x - 4) - 1
Use for Modelling	
3(x + 2)	
- v· -/	

Session 2: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Briefly discuss student responses

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form B

8th Grade – Readiness Standard 4 – 7.EE.1b

Name			Date	
	get: I will expand linear expression Write the equivalent expanded exp		utes)	
1.	8(x + 5)	2.	4(x - 9)	
3.	6(7 <i>x</i> + 4)	4.	9(4 <i>x</i> – 2)	
5.	5(3x + 8) - x	6.	7(9x + 4) + 5x	

Session 3: Modeling (I Do)

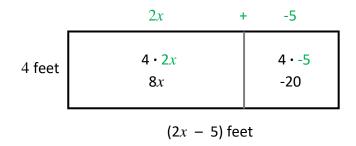
8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

Kayla needs to cover a rectangular floor with tiles. The width of the hallway is 4 feet and the length is 5 feet shorter than two times an unknown number, x. The area can be calculated by multiplying the width, 4 feet, times the length, (2x-5) feet. This area can be represented by the expression, 4(2x-5). Find the expanded expression for the area of the floor. Then, find the area of the floor when the unknown, x, is equal to 10 feet.

4 feet	
	(2x-5) feet


Session 3: Modeling (I Do – Visual Support)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

Kayla needs to cover a rectangular floor with tiles. The width of the hallway is 4 feet and the length is 5 feet shorter than two times an unknown number, x. The area can be calculated by multiplying the width, 4 feet, times the length, (2x - 5) feet. This area can be represented by the expression, 4(2x - 5). Find the expanded expression for the area of the floor. Then, find the area of the floor when the unknown, x, is equal to 10 feet.

Area =
$$8x + -20$$

 $8(10) + -20$ When x = 10 feet,
 $80 + -20$ the area is 60 square feet

Note: Color-coding is provided to help the interventionist make connections between the numbers, symbols and pictures. It may also help students who struggle to make similar connections.

Session 3: Modeling (I Do - Teacher Notes)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

Kayla needs to cover a rectangular floor with tiles...

I am going to think aloud to model solving this problem.

Your job is to watch, listen, think and ask questions.

First, it is important to know what the problem is about.

The problem is about Kayla covering a floor.

Second, I need to determine what I need to find.

I need to find the expanded expression of its area when the unknown, x, is equal to 10 feet.

Third, I need to determine what I know.

I know the shape of the floor is a rectangle and its area is represented with the algebraic expression 4(2x - 5). (Write "Algebraic Area = 4(2x - 5)" below the drawing and point to the length "(2x - 5)" and width "4".)

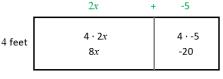
Fourth, I need to figure out what I can try.

I will begin by drawing an area model, similar to when we expanded using algebra tiles.

(Draw a rectangle and label the sides with "4 feet" and "2x - 5 feet".)

Next, I will separate the area into 2 sections to represent the two types of tiles.

(Draw a vertical line inside the rectangle.)


And, rewrite length as an equivalent addition expression using the "add the opposite to subtract" strategy. (Point to the subtraction sign in the expression for the length.)

Subtracting 5 is equal to adding negative 5, so I can rewrite the length as 2x + -5.

(Rewrite the length above the rectangle.)

To find the total number of x's, I need to multiply 4 times 2x.

(Write " $4 \cdot 2x$ ")

(2x - 5) feet

4 times 2x...which is equal to 8x. (Write "8x")

To find the total number of ones, I need to multiply 4 times negative 5.

(Write "4 · -5")

Area = 8x + -20

Which is equal to negative 20. (Write "-20")

8(10) + -20

80 + -20

60

When x = 10 feet, the area is 60 square feet

It looks like the expanded area is equal to 8x + -20.

(Point to the partial products inside each area and write "Area = 8x + -20" below the rectangle.)

When x is equal to 10 feet...we can replace the x with the number 10. (Write an "8(10) + -20".)

Now I have 8 groups of 10 ...and 8 times 10 is 80. (Write "80 + -20".)

And, 80 plus negative 20 is equal to 60. (Write "60" and "When x = 10 feet, the area is 60 square feet".)

Last, I need to make sure that my answer makes sense.

This makes sense because I modeled the length and width in a math drawing. Then, I found each partial area to find the expanded expression. Then, I found the area when x = 10 feet by replacing x with 10 feet.

Name	Date
------	------

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 3: Guided Practice (We Do)

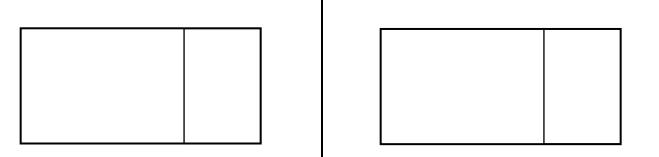
We Do Together: (Teacher Actions)

> Say, draw and expand each linear expression using multiplication.

1.	4(x + 3)	2.	3(<i>x</i> + 5)	
3.	2(3x - 1)	4.	2(-3x - 1)	
3.	2(3x - 1)	4.	2(-3 <i>x</i> – 1)	
3.	2(3 <i>x</i> – 1)	4.	2(-3 <i>x</i> - 1)	
3.	2(3 <i>x</i> – 1)	4.	2(-3 <i>x</i> - 1)	
3.	2(3 <i>x</i> – 1)	4.	2(-3 <i>x</i> - 1)	

Date _____

Learning Target: I will expand linear expressions


8th Grade - RS 4 - 7.EE.1b

Session 3: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

> Students take turns leading to expand each linear expression using drawings and multiplication.

5.	3(x + 2)	6.	2(x + 3)
7.	5(2x + 3) + 1	8.	5(2x - 3) + x
9.	3(-x + 2)	10.	3(-2x - 4)

1.

3.

Name _____ Date ____

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 3: Guided Practice (We Do – Teacher Notes)

2.

4.

We Do Together: (Teacher Actions)

> Say, draw and expand each linear expression using multiplication.

4(x + 3) = 4x + 12

	x	+ 3	
4	4 ⋅ <i>x</i> 4 <i>x</i>	4·3 12	

2(3x - 1)

2(3x + -1) = 6x + -2

$$3(x + 5) + 2x$$

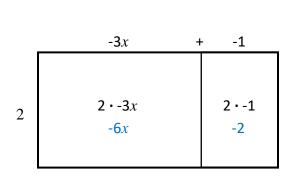
$$3x + 15 + 2x = 5x + 15$$

$$x + 5$$

$$3 \cdot x$$

$$3x$$

$$3 \cdot 5$$


$$15$$

2(-3x - 1) + 4

2(-3x + -1) + 4

 $-6x + \underline{-2} + \underline{4} = -6x + 2$

	3 <i>x</i>	+ -1
2	2 · 3 <i>x</i> 6 <i>x</i>	2·-1 -2

- Re-write the linear expression using the "add the opposite to subtract" strategy
- Expand by multiplying by creating equal groups before combining like terms
- Expand by multiplying by creating equal groups

Session 3: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Briefly discuss student responses

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form C

8th Grade – Readiness Standard 4 – 7.EE.1b

Name			Date			
	earning Target: I will expand linear expressions. Pirections: Write the equivalent expanded expression. (Work time: 4 minutes)					
1.	7(x + 4)	2.	5(x - 7)			
3.	3(8 <i>x</i> + 6)	4.	8(3 <i>x</i> – 5)			
5.	6(2x + 9) + x	6.	9(5 <i>x</i> + 3) – 2 <i>x</i>			

Session 4: Modeling (I Do)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

On the Delta Math readiness screener, Matt selected the following answer choice. Is he correct? If not, why do you think he chose his answer?

$$4(2x + 8) + x$$

- 9x + 8 0 + 8x + 32 0 + 41x 0 + 9x + 32

Session 4: Modeling (I Do – Visual Support)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

On the Delta Math readiness screener, Matt selected the following answer choice. Is he correct? If not, why do you think he chose his answer?

Think: 4 groups of
$$(2x + 8)$$
 plus another $x \longrightarrow 4(2x + 8) + x$
4 groups of $2x$'s and 4 groups of 8 plus another $x \longrightarrow 4 \cdot 2x + 4 \cdot 8 + x$
 $8x + 32 + x$
 $9x + 32$
 $9x + 32$
 $9x + 32$

Session 4: Modeling (I Do - Teacher Notes)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

On the Delta Math readiness screener, Matt selected the following answer choice. Is he correct? If not, why do you think he chose his answer?

First, it is important to know what the problem is about.

This problem is about Matt answering a problem on a Delta Math readiness screener.

Second, I need to determine what I need to find.

I need to find if Matt chose the correct answer. And if he was not correct, I need to consider why he made the choice that he did.

Third, I need to determine what I know.

I know that Matt chose "9x + 8" as the expanded answer and I know that a number in front of a parentheses needs to be distributed to each term inside the parentheses".

Fourth, I need to figure out what I can try.

I am going to try writing equivalent expressions by multiplying the 4 by the 2x + 8 inside the parentheses. (Point to the 4(2x + 8)

4 groups of (2x + 8) plus another x is equivalent to 4 groups of 2x's and 4 groups of 8 plus another x ... $(Write "(4 \cdot 2x + 4 \cdot 8 + x".))$

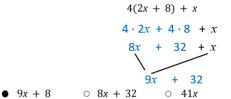
And 4 groups of 2x's is equal to 8x's... (Write "8x".)

4 groups of 8 is equal to 32... (Write "+ 32".)

And this is 1 more x to combine to find the total. (Point to the x on the first line and write " + x" below it.)

8x and x are like terms and can be combined to equal 9x. (Write "9x".)

And the 32 is not a like term, so the final answer is 9x + 32... (Write "+ 32".)


This is not the answer choice that Matt chose...therefore, he must have selected an incorrect answer choice.

I think that Matt chose his answer because he might not have remembered that the 4 must be multiplied by both terms in the parentheses...2x and 8...and that is why the correct answer is 9x + 32 and not 9x + 8.

Last, I need to make sure that my answer makes sense.

I found that Matt was not correct. It makes sense because I thought about the problem as 4 groups of the entire parentheses, 2x + 8 and then combined like terms to find the correct answer...9x + 32.

Find the equivalent expanded expression:

© OAISD, November 2018

 \circ 9x + 32

Name Date

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 4: Guided Practice (We Do)

We Do Together: (Teacher Actions)

> Say the problem with "grouping" language and expand each linear expression using multiplication.

1.	7(x +	. 31
l.	/(λ Τ	· ၁)

$$8(x + 6) + 3x$$

$$4(9x - 1)$$

$$9(-6x - 7) + 5$$

Date

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 4: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

> Students take turns leading to expand each linear expression using multiplication.

5.
$$6(x + 7)$$

$$8(x + 6)$$

$$7(8x + 4) + 1$$

$$9(6x - 7) + x$$

$$8(-x + 9) + 3x + 5$$

$$7(-8x - 6) + 4x + 2$$

Name _____ Date ____

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 4: Guided Practice (We Do – Teacher Notes)

We Do Together: (Teacher Actions)

> Say the problem with "grouping" language and expand each linear expression using multiplication.

1.	7(x + 3) $7x + 21$	2.	8(x + 6) + 3x $8x + 48 + 3x$ $11x + 48$
3.	4(9x - 1) $4(9x + -1)$ $36x + -4$		9(-6x - 7) + 5 $9(-6x + -7) + 5$ $-54x + -63 + 5$ $-54x + -58$

- Re-write the linear expression using the "add the opposite to subtract" strategy
- Expand by multiplying by creating equal groups before combining like terms
- Expand by multiplying by creating equal groups

Session 4: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form D

Name	Date
Learning Target: I will expand linear expressions	
Directions: Write the equivalent expanded expr	2.
6(x + 9)	8(x - 6)
3.	4.
4(5x + 3)	9(2x - 7)
5.	6.
3(6x + 8) - x	5(8x + 3) + 4x

Name Dat

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 5: Guided Practice (We Do)

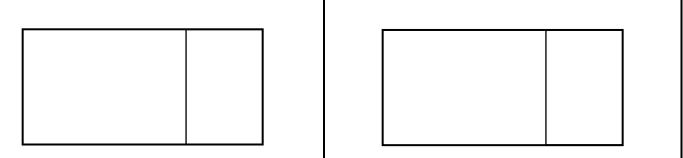
We Do Together: (Teacher Actions)

> Say, draw and expand each linear expression using multiplication.

1.	7(x + 3)	2.	3(x + 9)	
3.	6(3x - 8)	4.	9(-4x - 7)	
3.	6(3 <i>x</i> – 8)	4.	9(-4x - 7)	
3.	6(3 <i>x</i> – 8)	4.	9(-4x - 7)	
3.	6(3 <i>x</i> – 8)	4.	9(-4x - 7)	

Date _____

Learning Target: I will expand linear expressions


8th Grade - RS 4 - 7.EE.1b

Session 5: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

> Students take turns leading to expand each linear expression using drawings and multiplication.

5.	8(x + 7)	6.	7(x + 8)
7.	6(7x + 9) + 1	8.	7(6x - 9) + x
9.	7(-x + 9)	10.	8(-3x - 6)

Session 5: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form E

Name			Date	
	: I will expand linear expressi te the equivalent expanded expande		4 minutes)	
1.	te the equivalent expanded e.	2.	4 minutes)	
	9(x + 3)		6(x - 4)	
3.		4.		
	5(9x + 2)		7(3x - 6)	
6.		6.		
	8(4x + 7) + x	0.	4(7x + 3) - 6x	
	,			

Name	Date

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 6: Guided Practice (We Do)

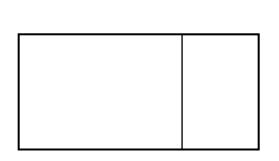
We Do Together: (Teacher Actions)

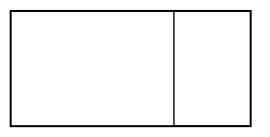
> Say, draw and expand each linear expression using multiplication.

1.	4(x + 9)	2.	3(x + 7)	
3.	8(3 <i>x</i> – 6)	4.	6(-3x - 9)	
3.	8(3 <i>x</i> – 6)	4.	6(-3 <i>x</i> – 9)	
3.	8(3 <i>x</i> – 6)	4.	6(-3 <i>x</i> – 9)	
3.	8(3 <i>x</i> – 6)	4.	6(-3 <i>x</i> – 9)	
3.	8(3x - 6)	4.	6(-3 <i>x</i> – 9)	

Date _____

Learning Target: I will expand linear expressions


8th Grade - RS 4 - 7.EE.1b


Session 6: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

> Students take turns leading to expand each linear expression using drawings and multiplication.

5.	9(x + 8)	6.	8(<i>x</i> + 9)	
7.	7(4 <i>x</i> + 6) + 1	8.	7(6x - 4) + x	
9.	8(- <i>x</i> + 7)	10.	9(-7x - 4)	

Session 6: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form F

Name			Date	
Learning Tar	get: I will expand linear expressi	ons.		
Directions: \	Vrite the equivalent expanded e	xpression. (Work time: 4	l minutes)	
1.		2.		
	8(<i>x</i> + 5)		4(x - 9)	
3.		4.		
	6(7x + 4)		9(4x - 2)	
5.		6.		
	5(3x + 8) - x		7(9x + 4) + 5x	

Name	Date
------	------

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 7: Guided Practice (We Do)

We Do Together: (Teacher Actions)

> Say the problem with "grouping" language and expand each linear expression using multiplication.

1.	7(x +	4)
1.	/(1	7,

2.
$$9(x + 6) + 3x$$

$$4(8x - 1)$$

$$8(-6x - 7) + 5$$

Date

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 7: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

> Students take turns leading to expand each linear expression using multiplication.

5.
$$9(x + 7)$$

$$7(x + 6)$$

$$6(8x + 4) + 1$$

$$8(6x - 7) + x$$

$$4(-x + 9) + 3x + 5$$

$$9(-8x - 6) + 4x + 2$$

Session 7: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form G

Name			Date	
	et: I will expand linear expression of the contract of the equivalent expanded expan		minutes)	
1.	7(x + 4)	2.	5(x - 7)	
3.	3(8 <i>x</i> + 6)	4.	8(3 <i>x</i> – 5)	
5.	6(2x + 9) + x	6.	9(5 <i>x</i> + 3) – 2 <i>x</i>	

Name	Date	

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 8: Guided Practice (We Do)

We Do Together: (Teacher Actions)

> Say the problem with "grouping" language and expand each linear expression using multiplication.

1.			

$$9(x + 3)$$

$$7(x + 6) + 3x$$

$$6(7x - 1)$$

$$8(-6x - 7) + 5$$

Date

Learning Target: I will expand linear expressions

8th Grade - RS 4 - 7.EE.1b

Session 8: Guided Practice (We Do - Continued)

You Do Together: (As a class, or in small groups)

> Students take turns leading to expand each linear expression using multiplication.

5.
$$6(x + 8)$$

$$8(x + 9)$$

$$7(9x + 3) + 1$$

$$9(8x - 6) + x$$

$$8(-x + 7) + 3x + 5$$

$$9(-8x - 6) + 5x + 2$$

Session 8: Self-Reflection

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

- ➤ What did I learn today about expanding algebraic expressions?
- ➤ How confident do I feel about expanding algebraic expressions on my own? (Thumbs up, down, or sideways)

Quick Check - Form H

Name	Date
Learning Target: I will expand linear expression:	
Directions: Write the equivalent expanded expr	2.
6(x + 9)	8(x - 6)
3.	4.
4(5x + 3)	9(2x - 7)
5.	6.
3(6x + 8) - x	5(8x + 3) + 4x

Independent Practice (You Do)

8th Grade – Readiness Standard 4 – 7.EE.1b

Learning Target: I will expand linear expressions

Readiness for solving equations with more than one step

Title of Game: Play "Expand Linear Expressions Match-up!"

Number of Players: 2

Objective: To match all of your "Problem" cards to the equivalent "Answer" linear expression cards.

Materials:

- > 1 set of **Problem** and **Answer** cards per group
- 1 recording sheet per player

Set-up:

- > Deal all 10 **Problem** cards face down in a row.
- Deal 5 Answer cards face up to each player.

Directions:

- Player 1 goes first
 - o Take a card from the row of face down **Problem** cards and turn it face up
 - Write the problem on the recording sheet
 - o And, find the answer in simplest form
- > If **Player 1** has the **Answer** card, place it face up on top of the **Problem** card, take both cards and say:

"The value being distributed is ____."

- > If **Player 1** does not have the equivalent **Answer** card, turn the **Problem** card back over.
- Players 1 and 2 alternate turns. The winner is the first player to match all 5 of their cards.

Problem Cards (Set A)

8th Grade – Readiness Standard 4 – 7.EE.1b

Preparation: Copy the **Problem (Set A)** cards and **Answer (Set A)** cards in two different colors.

Sets A_1 can be used for one pair of students and Sets A_2 can be used for a second pair of students.

	6(3x + 8) Set A	6(3x - 8) Set A	-6(4x-8)	6(9x + 7) Set A
	SetA	SetA	SetA	JELA
Set A ₁	6(9x-7)	-6(9x-7)Set A	-7(8x-9)	7(8x + 9) Set A
	7(9 <i>x</i> – 6)	-7(9x - 6)		
	Set A	Call A		
	Set A	Set A		
	6(3x + 8) Set A	6(3x - 8) Set A	-6(4x-8)	6(9x + 7) Set A
	96171	3617	961.1	SerA
Set A ₂	6(9x-7)	-6(9x-7)Set A	-7(8x-9)	7(8x + 9) Set A
	Set A	Set A	Set A	Set A
	7(9 <i>x</i> – 6)	-7(9x - 6)		
	Set A	Set A		
	Set A	Jet A		

Answer Cards (Set A)

8th Grade – Readiness Standard 4 – 7.EE.1b

Preparation: Copy the **Problem (Set A)** cards and **Answer (Set A)** cards in two different colors.

Sets A₁ can be used for one pair of students and Sets A₂ can be used for a second pair of students.

	18x + 48	18x - 48	-24x + 48	54x + 42
Set A ₁	54.x - 42 Set A	-54x + 42 Set A	-56x + 63 Set A	56x + 63 Set A
	63x - 42	-63x + 42		
	Set A	Set A		
-	SCLA	Set A		
	18x + 48	18x-48 Set A	-24x + 48	54x + 42
	JELA	Set A	Set A	Set A
Set A ₂	54 <i>x</i> - 42	-54x + 42	-56x + 63	56x + 63
	Set A	Set A	Set A	Set A
	63x - 42	-63x + 42		
	Set A	Set A		

Problem Cards (Set B)

8th Grade – Readiness Standard 4 – 7.EE.1b

Preparation: Copy the **Problem (Set B)** cards and **Answer (Set B)** cards in two different colors.

Sets B₁ can be used for one pair of students and Sets B₂ can be used for a second pair of students.

	8(3x + 9) Set B	8(3x - 9)	-8(4x - 9)	8(7x + 6) Set B
Set B ₁	8(7x - 6)	-8(7x - 6)	-9(4x - 8)	9(4x + 8)
	Set B	Set B	Set B	Set B
	9(6x - 7)	-9(6x - 7)		
	Set B	Set B		
	8(3x + 9)	8(3x - 9)	-8(4x - 9)	8(7x + 6)
	Set B	Set B	Set B	Set B
Set B ₂	8(7x - 6)	-8(7x - 6)	-9(4x - 8)	9(4x + 8)
	Set B	Set B	Set B	Set B
	9(6x - 7)	-9(6x - 7)		
	Set B	Set B		
	361.5	Зегь		

Answer Cards (Set B)

8th Grade – Readiness Standard 4 – 7.EE.1b

Preparation: Copy the **Problem (Set B)** cards and **Answer (Set B)** cards in two different colors.

Sets B₁ can be used for one pair of students and Sets B₂ can be used for a second pair of students.

	24x + 72	24x-72	-32x + 72	56x + 48
				5612
Set B ₁	56x-48	-56x + 48	-36x + 72	36x + 72
	54 <i>x</i> - 63	-54 <i>x</i> + 63		
	Set B	Set B		
	24x + 72	24x - 72	-32x + 72	56x + 48
	Set B	Set B	Set B	Set B
Set B ₂	56 <i>x</i> – 48	-56x + 48	-36x + 72	36x + 72
	Set B	Set B	Set B	Set B
	54 <i>x</i> - 63	-54 <i>x</i> + 63		
	Set B	Set B		

Questions for Solving Word Problems

Q_1	
	What is the problem about?
Q_2	
	What do I need to find?
Q_3	
	What do I know?
Q ₄	
	What can I try?
Q_5	
	Does my answer make sense?

Steps for Solving Word Problems

Q_1 .	What is the problem about?
Q_2 .	What do I need to find?
Q ₃ .	What do I know?
Q4.	What can I try?
Q ₅ .	Does my answer make sense?