

Algebra 1 Readiness Intervention Lessons

Readiness Standard 5-8.EE. 2

Learning Target: I will solve non-linear equations using square roots and cube roots
Readiness for A.REI.4: Factor quadratic equations

Table of Contents

Learning Target: I will solve non-linear equations using square roots and cube roots.
High School Planning Guide p. 3
Session 1 Whole Group: Analyze solved problems to solve non-linear equations p. 4using repeated multiplication.
Pairs: Record the missing parts of incomplete problems.Individual: Quick Check - Form A
Session 2 Whole Group: Analyze solved problems to solve non-linear equations p. 10 using repeated multiplication.
Pairs: Record the missing parts of incomplete problems.
Individual: Quick Check - Form B
Session 3 Whole Group: Analyze solved problems to solve non-linear equations p. 15 using square roots and cube roots.
Pairs: Gradual release to record the full solution.
Individual: Quick Check - Form C
Session 4 Whole Group: Analyze solved problems to solve non-linear equations p. 20
using square roots and cube roots.
Pairs: Record the full solution.
Individual: Quick Check - Form D
Additional Quick Checks: Forms E through H

IES Recommendations for Improving Algebra Knowledge:

(Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students, 2015, p. 3)

Algebra 1 - Readiness Standard 5-8.EE. 2

Recommended Actions ≈ 30 minutes	
Beginning (5 min.)	Review the learning target with the whole group. For sessions 2, 3 and 4, ask each student to set a personal goal for the day based on their previous Quick Check Score and use a highlighter to plot their goal on their Growth Chart.
Middle (15 min.)	Guided Practice - Whole Group (Analyze solved problems) - The teacher covers up all solution steps except the first two. - The teacher asks, "What math happened?" and elicits student responses to fill in the missing information. - The teacher answers student questions to clarify the solution step. - The teacher uncovers the next answer blank and repeats the analysis. - Pairs (Gradual release to solve problems) - Students take turns leading to "think aloud" while completing each problem.
$\begin{aligned} & \text { End } \\ & \text { (10min.) } \end{aligned}$	Reflect, Assess and Monitor Progress - Ask students to reflect on their progress towards the learning target. - What did I learn today about the learning target? - How confident do I feel about doing the learning target on my own? - Assess each student's progress using a Quick Check. - Guide students to self-correct their Quick Check. - Guide students to chart their progress in their Growth Chart. - If not using Delta Math lessons, record the activity in the table. - Collect each student's Quick Check and Growth Chart.
After	> Exit students who meet or exceed the learning goal for a third time.

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 1: Guided Practice (Whole Group)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{2}=81$ $x \bullet x=81$ $x \bullet x=9 \bullet 9 \text { or } x \bullet x=-9 \bullet-9$ $x=9 \text { or } x=-9$ $x= \pm 9$	Changed to Repeated Multiplication $x \cdot x=$ \qquad to eliminate the exponent Found Possible Values of x $9 \cdot 9$ and $-9 \cdot-9=$ \qquad Wrote the Solutions $x= \pm 9$ means $x=$ \qquad or $x=$ \qquad
2. Solve: $\begin{gathered} x^{3}=-125 \\ x \bullet x \bullet x=-125 \\ x \bullet x \bullet x=-5 \cdot-5 \cdot-5 \\ x=-5 \end{gathered}$	Changed to Repeated Multiplication $x \cdot x \cdot x=$ \qquad to eliminate the exponent Found a number multiplied by itself $\mathbf{3}$ times equal to -125 $-5 \cdot-5 \cdot-5=$ \qquad Wrote the Solution $x=$ \qquad
3. Solve: $\begin{aligned} x^{2} & =\frac{9}{16} \\ x \cdot x & =\frac{9}{16} \end{aligned}$ $x \bullet x=\frac{3}{4} \bullet \frac{3}{4} \quad \text { or } \quad x \cdot x=-\frac{3}{4} \bullet-\frac{3}{4}$ $x=\frac{3}{4} \quad \text { or } \quad x=-\frac{3}{4}$ $x= \pm \frac{3}{4}$	Changed to Repeated Multiplication $x \cdot x=$ \qquad to eliminate the exponent Found a number multiplied by itself equal to $\frac{9}{16}$? $\frac{3}{4} \cdot \frac{3}{4} \text { and }-\frac{3}{4} \cdot-\frac{3}{4}=$ \qquad Wrote Both Possible Solutions $x= \pm \frac{3}{4}$ means $x=$ \qquad or $x=$ \qquad

Name \qquad
\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 1: Guided Practice (Pairs)

Directions: Complete the missing steps to solve each non-linear equation.

4. $\begin{aligned} x^{2} & =49 \\ x \bullet x & =49 \end{aligned}$ $\begin{gathered} x \bullet x=\ldots _ \text {or } x \bullet x=-\ldots \\ x=\ldots \end{gathered}$ -	5. $\begin{gathered} x^{2}=64 \\ x \cdot x=64 \\ x \bullet x=\ldots \bullet-\quad \text { or } x \cdot x=\ldots \\ x= \end{gathered}$
6. $x^{2}=225$ $x \bullet x=$ \qquad $x \bullet x=$ \qquad or $x \cdot x=$ \qquad $x=$ \qquad or $x=$ \qquad $x= \pm 15$	7. $x^{2}=144$ $x \bullet x=12 \cdot 12 \quad \text { or }$ \qquad \qquad or \qquad $x=$ \qquad
8. $\begin{gathered} x^{2}=\frac{16}{121} \\ x \bullet x=\frac{16}{121} \\ x \cdot x=-\square \cdot \frac{1}{\square} x \bullet x=-\frac{4}{11} \bullet-\frac{4}{11} \\ x=\frac{\text { or } x=-\infty}{x= \pm \frac{4}{11}} \end{gathered}$	9. $\begin{aligned} x^{2} & =\frac{100}{36} \\ x \cdot x & =\frac{100}{36} \end{aligned}$ or \qquad $\begin{gathered} \ldots \text { or } x=-\frac{10}{6} \\ x= \end{gathered}$

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 1: Guided Practice (Teacher Notes)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $\begin{aligned} x^{2} & =81 \\ x \cdot x & =81 \end{aligned}$ $x \bullet x=9 \bullet 9 \text { or } x \bullet x=-9 \bullet-9$ $x=9 \quad \text { or } x=-9$ $x= \pm 9$	Changed to Repeated Multiplication $x \bullet x=\boldsymbol{x}^{2}$ to eliminate the exponent Found a number multiplied by itself equal to 81? $9 \cdot 9 \text { and }-9 \cdot-9=81$ Wrote Both Possible Solutions $x= \pm 9 \text { means } x=+9 \text { or } x=-9$
2. Solve: $\begin{aligned} x^{3} & =-125 \\ x \bullet x \bullet x & =-125 \\ x \bullet x \bullet x & =-5 \bullet-5 \bullet-5 \\ x & =-5 \end{aligned}$	Changed to Repeated Multiplication $x \bullet x \bullet x=x^{3}$ to eliminate the exponent Found a number multiplied by itself $\mathbf{3}$ times equal to - $\mathbf{1 2 5}$ $-5 \cdot-5 \cdot-5=-125$ Wrote the Solution $x=-5$
3. Solve: $\begin{aligned} x^{2} & =\frac{9}{16} \\ x \bullet x & =\frac{9}{16} \end{aligned}$ $x \bullet x=\frac{3}{4} \cdot \frac{3}{4} \quad$ or $\quad x \cdot x=-\frac{3}{4} \cdot-\frac{3}{4}$ $x=\frac{3}{4} \quad \text { or } \quad x=-\frac{3}{4}$ $x= \pm \frac{3}{4}$	Changed to Repeated Multiplication $x \bullet x=x^{2}$ to eliminate the exponent Found a number multiplied by itself equal to $\frac{9}{16}$? $\frac{3}{4} \cdot \frac{3}{4} \text { and }-\frac{3}{4} \bullet-\frac{3}{4}=\frac{\mathbf{9}}{16}$ Wrote Both Possible Solutions $x= \pm \frac{3}{4} \text { means } x=\frac{3}{4} \text { or } x=-\frac{3}{4}$

Session 1: Self-Reflection

Learning Target: I will solve non-linear equations using square roots and cube roots

Briefly discuss student responses

What did I learn today about solving non-linear equations?
> How confident do I feel about solving non-linear equations on my own? (Thumbs up, down, or sideways)

Algebra 1 Quick Check - Form A

\qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1. \& $$
81
$$ \& 9

± 3 \& 4.5 \& 2. \& | x^{2} |
| :--- |
| 72 | \& 36

± 6 \& 18

\hline 3.

$$
\pm 5
$$ \& \[

x^{3}
\]

\[
-5

\] \& 25 \& 375 \& 4. \& | x^{3} |
| :--- |
| ± 3 | \& 27 \& -9

\hline 5.

$$
-\frac{4}{6}
$$ \& \[

x^{2}
\]

$$
\frac{4}{6}
$$ \& $\frac{16}{36}$

$\pm \frac{4}{6}$ \& $\pm \frac{8}{18}$ \& 6.10 \& x^{2}

$\frac{9}{7}$ \& $\frac{81}{49}$
$\pm \frac{9}{7}$ \& $\pm \frac{9}{49}$

\hline
\end{tabular}

Algebra 1 Growth Chart

Readiness Standard 5-8.EE. 2

Name

Learning Target: I will solve non-linear equations using square roots and cube roots.
Goal: 5 out of 6 correct

Intervention Notes	Date	Score

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 2: Guided Practice (Whole Group)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{3}=8$ $x \bullet x \bullet x=8$ $x \cdot x \cdot x=2 \cdot 2 \cdot 2$ $x=2$	Changed to Repeated Multiplication $x \bullet x \bullet x=$ \qquad to eliminate the exponent Found a number multiplied by itself 3 times equal to 8 $2 \cdot-2 \cdot 2=$ \qquad Wrote the Solution $x=$ \qquad
2. Solve: $\begin{array}{r} x^{2}=25 \\ x \bullet x=25 \end{array}$ $x \bullet x=5 \cdot 5 \quad \text { or } \quad x \bullet x=-5 \bullet-5$ $x=5 \quad \text { or } \quad x=-5$ $x= \pm 5$	Changed to Repeated Multiplication $x \bullet x=$ \qquad to eliminate the exponent Found a number multiplied by itself equal to 25 ? $5 \cdot 5 \text { and }-5 \cdot-5=$ \qquad Wrote Both Possible Solutions $x= \pm 5$ means $x=$ \qquad or $x=$ \qquad
3. Solve: $\begin{aligned} x^{3} & =\frac{27}{64} \\ x \bullet x \bullet x & =\frac{27}{64} \\ x \bullet x \bullet x & =\frac{3}{4} \bullet \frac{3}{4} \bullet \frac{3}{4} \\ x & =\frac{3}{4} \end{aligned}$	Changed to Repeated Multiplication $x \cdot x \cdot x=$ \qquad to eliminate the exponent Found a number multiplied by itself equal to $\frac{27}{64}$? $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=$ \qquad Wrote the Solutions $x=$ \qquad

Name \qquad
\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 2: Guided Practice (Pairs)

Directions: Complete the missing steps to solve each non-linear equation

4. Solve: $\begin{aligned} x^{3} & =27 \\ x \bullet x \bullet x & =27 \\ x \bullet x \bullet x & =3 \end{aligned}$ $x=$	5. Solve: $x^{3}=125$ $x \bullet x \bullet x=$ \qquad $x \bullet x \bullet x=$ \qquad \qquad \qquad $x=$ \qquad
6. Solve: $\begin{aligned} x^{3} & =216 \\ x \bullet x \cdot x & =216 \\ x \bullet x \bullet x & = \\ x & =6 \end{aligned}$	7. Solve: $x^{3}=-64$ $x \bullet x \cdot x=$ \qquad $x \bullet x \cdot x=$ \qquad \qquad \qquad $x=$ \qquad
8. Solve: $\begin{aligned} x^{3} & =\frac{8}{1000} \\ x \bullet x \bullet x & =\frac{8}{1000} \\ x \bullet x \bullet x & =- \end{aligned}$	9. Solve: $x^{3}=-\frac{343}{27}$ $x \cdot x \cdot x=-$ $x \bullet x \cdot x=$ \qquad $x=-\frac{7}{3}$

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 2: Guided Practice (Teacher Notes)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{3}=8$ $x \bullet x \bullet x=8$ $x \cdot x \cdot x=2 \cdot 2 \cdot 2$ $x=2$	Changed to Repeated Multiplication $x \bullet x \bullet x=\boldsymbol{x}^{3}$ to eliminate the exponent Found a number multiplied by itself 3 times equal to 8 $2 \cdot-2 \cdot 2=8$ Wrote the Solution $x=2$
2. Solve: $\begin{array}{r} x^{2}=25 \\ x \bullet x=25 \end{array}$ $x \bullet x=5 \cdot 5 \text { or } x \bullet x=-5 \cdot-5$ $x=5 \quad \text { or } x=-5$ $x= \pm 5$	Changed to Repeated Multiplication $x \bullet x=x^{2}$ to eliminate the exponent Found a number multiplied by itself equal to 25? $5 \cdot 5 \text { and }-5 \cdot-5=25$ Wrote Both Possible Solutions $x= \pm 5$ means $x=\mathbf{+ 5}$ or $x=-\mathbf{5}$
3. Solve: $\begin{aligned} x^{3} & =\frac{27}{64} \\ x \bullet x \bullet x & =\frac{27}{64} \\ x \bullet x \bullet x & =\frac{3}{4} \bullet \frac{3}{4} \bullet \frac{3}{4} \\ x & =\frac{3}{4} \end{aligned}$	Changed to Repeated Multiplication $x \bullet x \bullet x=\boldsymbol{x}^{\mathbf{3}}$ to eliminate the exponent Found a number multiplied by itself equal to $\frac{27}{64}$? $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{27}{\mathbf{6 4}}$ Wrote the Solutions $x=\frac{3}{4}$

Session 2: Self-Reflection

Algebra 1 - Readiness Standard 5 - 8.EE. 2

Learning Target: I will solve non-linear equations using square roots and cube roots

Briefly discuss student responses

What did I learn today about solving non-linear equations?

How confident do I feel about solving non-linear equations on my own? (Thumbs up, down, or sideways)

Algebra 1 Quick Check - Form B

Readiness Standard 5-8.EE. 2

Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 3: Guided Practice (Whole Group)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{2}=81$ $\sqrt{x^{2}}=\sqrt{81}$ $x= \pm 9$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{ } \quad \bullet$ \qquad to eliminate the exponent Simplified each radical $\sqrt{81}=\sqrt{ } \bullet \text { or } \sqrt{ }$ \square
2. Solve: $x^{3}=-64$ $\sqrt[3]{x^{3}}=\sqrt[3]{-64}$ $x=-4$	Took the cube root of each side Since $\sqrt{x^{3}}=\sqrt{\square^{\bullet}{ }^{\bullet}}=\boldsymbol{x}$ to eliminate the exponent Simplified each radical $\sqrt{-64}=\sqrt{\square} \bullet$
3. Solve: $x^{2}=\frac{9}{25}$ $\sqrt{x^{2}}=\sqrt{\frac{9}{25}}$ $x= \pm \frac{3}{5}$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{\square}=$ to eliminate the exponent $\begin{gathered} \text { Simplified each radical } \\ \sqrt{\frac{9}{25}}=\sqrt{-\bullet-} \text { or } \sqrt{--\cdot--} \end{gathered}$

Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 3: Guided Practice (Pairs)

Directions: Complete the missing steps to solve each non-linear equation.

\qquad
\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 3: Guided Practice (Teacher Notes)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{2}=81$ $\sqrt{x^{2}}=\sqrt{81}$ $x= \pm 9$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}=\boldsymbol{x}$ to eliminate the exponent Simplified each radical $\sqrt{81}=\sqrt{9 \bullet 9} \text { or } \sqrt{-9 \bullet-9}$
2. Solve: $x^{3}=-64$ $\sqrt[3]{x^{3}}=\sqrt[3]{-64}$ $x=-4$	Took the cube root of each side Since $\sqrt{x^{3}}=\sqrt{\boldsymbol{x} \bullet \boldsymbol{x} \cdot \boldsymbol{x}}=\boldsymbol{x}$ to eliminate the exponent Simplified each radical $\sqrt{81}=\sqrt{4 \bullet 4 \bullet 4} \text { or } \sqrt{-4 \bullet-4 \bullet-4}$
3. Solve: $x^{2}=\frac{9}{25}$ $\sqrt{x^{2}}=\sqrt{\frac{9}{25}}$ $x= \pm \frac{3}{5}$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{x \cdot x}=x$ to eliminate the exponent $\begin{gathered} \text { Simplified each radical } \\ \sqrt{\frac{9}{25}}=\sqrt{\frac{3}{5} \cdot \frac{3}{5}} \text { or } \sqrt{-\frac{3}{5} \cdot-\frac{3}{5}} \end{gathered}$

Session 3: Self-Reflection

Learning Target: I will solve non-linear equations using square roots and cube roots

Briefly discuss student responses

What did I learn today about solving non-linear equations?
> How confident do I feel about solving non-linear equations on my own? (Thumbs up, down, or sideways)

Readiness Standard 5-8.EE. 2

Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 4: Guided Practice (Whole Group)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{2}=64$ $\sqrt{x^{2}}=\sqrt{64}$ $x= \pm 8$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{\square}=$ to eliminate the exponent Simplified each radical $\sqrt{64}=\sqrt{ }$ \square \square or $\sqrt{ }$ \square \bullet
2. Solve: $x^{3}=-125$ $\sqrt[3]{x^{3}}=\sqrt[3]{-125}$ $x=-5$	Took the cube root of each side Since $\sqrt{x^{3}}=\sqrt{ـ^{\bullet}{ }^{\bullet}}=\boldsymbol{x}$ to eliminate the exponent Simplified each radical $\sqrt{-125}=\sqrt{ }{ }^{\bullet}{ }^{\bullet}$
3. Solve: $x^{2}=\frac{36}{121}$ $\sqrt{x^{2}}=\sqrt{\frac{36}{121}}$ $x= \pm \frac{6}{11}$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{\square}=$ \qquad to eliminate the exponent $\begin{gathered} \text { Simplified each radical } \\ \sqrt{\frac{36}{121}}=\sqrt{-\cdot-} \text { or } \sqrt{--\cdot--} \end{gathered}$

MATH \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 4: Guided Practice (Pairs)

Directions: Solve each non-linear equation.

4.	$x^{2}=36$	5.	$x^{2}=81$
6.	$x^{3}=8$	7.	$x^{3}=-64$
8.	$x^{2}=\frac{49}{81}$	9.	3 125
			$x^{3}=\frac{27}{27}$

\qquad

Learning Target: I will solve non-linear equations using square roots and cube roots

Readiness for factoring quadratic equations

Session 4: Guided Practice (Teacher Notes)

Directions: Below are solved problems to solve non-linear equations. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. Solve: $x^{2}=64$ $\sqrt{x^{2}}=\sqrt{64}$ $x= \pm 8$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}=\boldsymbol{x}$ to eliminate the exponent Simplified each radical $\sqrt{64}=\sqrt{8 \bullet 8} \text { or } \sqrt{-\mathbf{8}-\mathbf{8}}$
2. Solve: $x^{3}=-125$ $\sqrt[3]{x^{3}}=\sqrt[3]{-125}$ $x=-5$	Took the cube root of each side Since $\sqrt{x^{3}}=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x} \cdot \boldsymbol{x}}=\boldsymbol{x}$ to eliminate the exponent Simplified each radical $\sqrt{-125}=\sqrt{-5 \bullet-5 \bullet-5}$
3. Solve: $x^{2}=\frac{36}{121}$ $\sqrt{x^{2}}=\sqrt{\frac{36}{121}}$ $x= \pm \frac{6}{11}$	Took the square root of each side $\sqrt{x^{2}}=\sqrt{x \cdot x}=x$ to eliminate the exponent Simplified each radical $\sqrt{\frac{36}{121}}=\sqrt{\frac{6}{11} \cdot \frac{6}{11}} \text { or } \sqrt{-\frac{6}{11} \cdot-\frac{6}{11}}$

Session 4: Self-Reflection

Learning Target: I will solve non-linear equations using square roots and cube roots

Briefly discuss student responses

What did I learn today about solving non-linear equations?
> How confident do I feel about solving non-linear equations on my own? (Thumbs up, down, or sideways)
\qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

Readiness Standard 5-8.EE. 2

Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

Readiness Standard 5-8.EE. 2

Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

Algebra 1 Quick Check - Form G

Readiness Standard 5-8.EE. 2

Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1.
\[
\pm 4
\] \& \begin{tabular}{l}
\[
x^{2}
\] \\
8
\end{tabular} \& \begin{tabular}{l}
16 \\
4
\end{tabular} \& \(\pm 8\) \& 2.
\[
-8
\] \& \[
\pm 32
\] \& \[
64
\]
\[
\pm 8
\] \& 128 \\
\hline 3. 3 \& \[
x^{3}
\]
\[
\pm 3
\] \& \[
27
\]
\[
\pm 9
\] \& 81 \& 4. \& \[
x^{3}
\]
-4 \& \[
-64
\]
\[
4
\] \& \(\pm 4\) \\
\hline 5.
\[
\frac{7}{100}
\] \& \[
x^{2}
\]
\[
\frac{7}{10}
\] \& \[
\frac{49}{100}
\]
\[
\pm \frac{7}{100}
\] \& \(\pm \frac{7}{10}\) \& \(6.10{ }^{6}\) \& \(x^{2}\)
\(\pm \frac{6}{16}\) \& \(\frac{36}{16}\)

$\pm \frac{6}{4}$ \& $\frac{6}{4}$

\hline
\end{tabular}

Algebra 1 Quick Check - Form H

Readiness Standard 5-8.EE. 2
Name \qquad Date \qquad

Learning Target: I will solve non-linear equations using square roots and cube roots.

Directions: Circle the solution to each equation. (Work time: 3 minutes)

