

Algebra 1 Readiness Intervention Lessons

Readiness Standard 4-8.EE. 1

Learning Target: I will simplify numerical expressions with integer exponents
Readiness for 8.EE.2: Find equivalent numerical expressions using square roots and cube roots

Learning Target: I will simplify numerical expressions with integer exponents.
Session 1 Whole Group: Analyze solved problems to simplify expressions with p. 4 positive exponents using repeated multiplication.
Pairs: Record the missing parts of incomplete problems. Individual: Quick Check - Form A
Session 2 Whole Group: Analyze solved problems to simplify expressions with p. 10 negative exponents using repeated multiplication.
Pairs: Record the missing parts of incomplete problems.
Individual: Quick Check - Form B
Session 3 Whole Group: Analyze solved problems to simplify expressions using p. 15 the power properties.
Pairs: Gradual release to record the full solution. Individual: Quick Check - Form C
Session 4 Whole Group: Analyze solved problems to simplify expressions using p. 20 the power properties.
Pairs: Record the full solution.Individual: Quick Check - Form D
Additional Quick Checks: Forms E through H p. 25-28

IES Recommendations for Improving Algebra Knowledge:

Recommendation

1. Use solved problems to engage students in analyzing algebraic reasoning and strategies.
2. Teach students to utilize the structure of algebraic representations.
3. Teach students to intentionally choose from alternative algebraic strategies when solving problems.
(Teaching Strategies for Improving Algebra Knowledge in
Middle and High School Students, 2015, p. 3)

Algebra 1 - Readiness Standard 4-8.EE. 1

Recommended Actions ≈ 30 minutes	
Beginning (5 min.)	Review the learning target with the whole group. For sessions 2, 3 and 4, ask each student to set a personal goal for the day based on their previous Quick Check Score and use a highlighter to plot their goal on their Growth Chart.
Middle (15 min.)	Guided Practice - Whole Group (Analyze solved problems) - The teacher covers up all solution steps except the first two. - The teacher asks, "What math happened?" and elicits student responses to fill in the missing information. - The teacher answers student questions to clarify the solution step. - The teacher uncovers the next answer blank and repeats the analysis. - Pairs (Gradual release to solve problems) - Students take turns leading to "think aloud" while completing each problem.
$\begin{aligned} & \text { End } \\ & \text { (10min.) } \end{aligned}$	Reflect, Assess and Monitor Progress - Ask students to reflect on their progress towards the learning target. - What did I learn today about the learning target? - How confident do I feel about doing the learning target on my own? - Assess each student's progress using a Quick Check. - Guide students to self-correct their Quick Check. - Guide students to chart their progress in their Growth Chart. - If not using Delta Math lessons, record the activity in the table. - Collect each student's Quick Check and Growth Chart.
After	> Exit students who meet or exceed the learning goal for a third time.

\qquad

Learning Target: I will simplify numerical expressions with positive integer exponents

Algebra 1 - Readiness Standard 4-8.EE. 1 ex
Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 1: Guided Practice (Whole Group)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. $\begin{aligned} 3^{6} \times 3^{2} & =3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \times 3 \cdot 3 \\ & =3^{8} \end{aligned}$	Changed to Repeated Multiplication $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=$ \qquad and $3 \cdot 3=$ \qquad to see the total number of common bases. Changed Back to Exponential Form The exponent \qquad represents 3 multiplied by itself \qquad times.
2. $\begin{aligned} \frac{5^{6}}{5^{2}} & =\frac{5 \cdot 5 \cdot \not \subset \cdot 5 \cdot 5 \cdot 5}{\not 5 \cdot \%} \\ & =5 \cdot 5 \cdot 5 \cdot 5 \\ & =5^{4} \end{aligned}$	Changed to Repeated Multiplication $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5=$ \qquad and $5 \cdot 5=$ \qquad to see the total number of common bases. Simplified Fractions When multiplying, ignore each $\frac{5}{5}$ because its value is Changed Back to Exponential Form The exponent \qquad represents 5 multiplied by itself \qquad times.
3. $\begin{aligned} \left(4^{2}\right)^{5} & =4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2} \\ & =4 \cdot 4 \\ & =4^{10} \end{aligned}$	Changed to Repeated Multiplication $4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2}=$ \qquad to see the total number of common bases. Changed to Repeated Multiplication Each 4-4 = \qquad to see the total number of common bases. Changed Back to Exponential Form The exponent \qquad represents 4 multiplied by itself \qquad times.

Name \qquad Date \qquad

Learning Target: I will simplify numerical expressions with positive integer exponents

Algebra 1 - Readiness Standard 4 - 8.EE. 1

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 1: Guided Practice (Pairs)

Directions: Complete the missing steps to simplify each expression in exponential form.

4. $4^{7} \times 4^{3}$ $4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \quad \times \quad 4 \cdot 4 \cdot 4$ 4	5. $7^{6} \cdot 7^{3}$ $7 \bullet 7 \bullet 7 \cdot 7 \bullet 7 \bullet 7 \text { • }$
6. $\begin{gathered} \frac{9^{6}}{9^{4}} \\ \frac{9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9}{9} \end{gathered}$	7. \qquad
8. $\left(8^{3}\right)^{4}$ $8 \bullet 8 \cdot 8 \bullet 8$	9. $\begin{aligned} & \left(6^{4}\right)^{2} \\ & 6^{4} \cdot 6^{4} \end{aligned}$

\qquad

Learning Target: I will simplify numerical expressions with positive integer exponents

Algebra 1 - Readiness Standard 4-8.EE. 1

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 1: Guided Practice (Teacher Notes)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. $\begin{aligned} 3^{6} \times 3^{2} & =3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \times 3 \cdot 3 \\ & =3^{8} \end{aligned}$	Changed to Repeated Multiplication $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=\underline{3^{6}}$ and $3 \cdot 3=\underline{\mathbf{3}^{2}}$ to see the total number of common bases. Changed Back to Exponential Form The exponent $\underline{8}$ represents 3 multiplied by itself $\underline{8}$ times.
2. $\begin{aligned} \frac{5^{6}}{5^{2}} & =\frac{5 \cdot 5 \cdot \not \cdot \not \cdot \% \cdot 5 \cdot 5}{\not 5 \cdot \%} \\ & =5 \cdot 5 \cdot 5 \cdot 5 \\ & =5^{4} \end{aligned}$	Changed to Repeated Multiplication $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5=\underline{\mathbf{5}^{\mathbf{6}}}$ and $5 \cdot 5=\mathbf{5}^{\mathbf{2}}$ to see the total number of common bases. Simplified Fractions When multiplying, ignore each $\frac{5}{5}$ because its value is $\underline{\mathbf{1}}$. Changed Back to Exponential Form The exponent $\underline{\mathbf{4}}$ represents 5 multiplied by itself $\underline{4}$ times.
3. $\begin{aligned} \left(4^{2}\right)^{5} & =4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2} \\ & =4 \cdot 4 \\ & =4^{10} \end{aligned}$	Changed to Repeated Multiplication $4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2} \cdot 4^{2}=\left(4^{2}\right)^{5}$ to see the total number of common bases. Changed Again to Repeated Multiplication Each 4-4= $\mathbf{4}^{\mathbf{2}}$ to see the total number of common bases. Changed Back to Exponential Form The exponent $1 \mathbf{1 0}$ represents 4 multiplied by itself $\underline{\mathbf{1 0}}$ times.

Session 1: Self-Reflection

Algebra 1 - Readiness Standard 4 - 8.EE. 1

Learning Target: I will simplify numerical expressions with integer exponents

Briefly discuss student responses
$>$ What did I learn today about simplifying numerical expressions with integer exponents?
$>$ How confident do I feel about simplifying numerical expressions on my own? (Thumbs up, down, or sideways)

Algebra 1 Quick Check - Form A

Readiness Standard 4-8.EE.1

Name

Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

Algebra 1 Growth Chart

Readiness Standard 4-8.EE.1

Name

Learning Target: I will simplify numerical expressions with integer exponents.
Goal: 5 out of 6 correct

Intervention Notes	Date	Score

\qquad

Learning Target: I will simplify numerical expressions with positive and negative integer exponents

Session 2: Guided Practice (Whole Group)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. $\begin{aligned} 3^{6} \times 3^{-2} & =\frac{3 \cdot 3 \cdot \not 2 \cdot \not 2 \cdot 3 \cdot 3}{\not 2 \cdot \not 3} \\ & =3 \cdot 3 \cdot 3 \cdot 3 \\ & =3^{4} \end{aligned}$	Changed to Repeated Multiplication $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=$ \qquad and $\frac{1}{3 \cdot 3}=$ \qquad to see the total number of common bases. Simplified Fractions When multiplying, ignore each $\frac{3}{3}$ because its value is \qquad -. Changed Back to Exponential Form The exponent \qquad represents 3 multiplied by itself \qquad times.
2. $\begin{aligned} \frac{4^{2}}{4^{5}} & =\frac{\not 4 \cdot y}{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4} \\ & =\frac{1}{4 \cdot 4 \cdot 4} \\ & =4^{-3} \end{aligned}$	Changed to Repeated Multiplication 4•4 = \qquad and $4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=$ \qquad to see the total number of common bases. Simplified Fractions When multiplying, ignore each $\frac{4}{4}$ because its value is . \qquad Changed Back to Exponential Form The exponent \qquad represents $\frac{1}{4}$ multiplied by itself \qquad times.
3. $\begin{aligned} \left(5^{-2}\right)^{3} & =5^{-2} \cdot 5^{-2} \cdot 5^{-2} \\ & =\frac{1}{5 \cdot 5} \cdot \frac{1}{5 \cdot 5} \cdot \frac{1}{5 \cdot 5} \\ & =5^{-6} \end{aligned}$	Changed to Repeated Multiplication $5^{-2} \cdot 5^{-2} \cdot 5^{-2}=$ \qquad to see the total number of common bases. Changed Negative Exponents to Division Each $\frac{1}{5 \cdot 5}=$ \qquad Changed Back to Exponential Form The exponent \qquad represents $\frac{1}{5}$ multiplied by itself \qquad times.

Name \qquad Date \qquad

Learning Target: I will simplify numerical expressions with
Algebra 1 - Readiness Standard 4 - 8.EE. 1 positive and negative integer exponents

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 2: Guided Practice (Pairs)

Directions: Complete the missing steps to simplify each expression in exponential form.

4. $\begin{gathered} 4^{7} \times 4^{-3} \\ \frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{4} \end{gathered}$	5. $7^{-6} \cdot 7^{2}$ $\overline{7 \bullet 7 \bullet 7 \bullet 7 \cdot 7 \cdot 7}$ 7
6. $\begin{gathered} \frac{9^{4}}{9^{7}} \\ 9 \cdot 9 \cdot 9 \cdot 9 \\ \hline 9 \square \end{gathered}$	7. $\begin{gathered} \frac{8^{5}}{8^{5}} \\ \hline 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \\ 8 \square \end{gathered}$
8. $\left(8^{3}\right)^{4}$ $8 \cdot 8 \cdot 8$	9.

\qquad

Learning Target: I will simplify numerical expressions with
Algebra 1 - Readiness Standard 4 - 8.EE. 1 positive and negative integer exponents
Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 2: Guided Practice (Teacher Notes)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

Write	Describe
1. $\begin{aligned} 3^{6} \times 3^{-2} & =\frac{3 \cdot 3 \cdot \not 2 \cdot \not 2 \cdot 3 \cdot 3}{\not 2 \cdot \not 3} \\ & =3 \cdot 3 \cdot 3 \cdot 3 \\ & =3^{4} \end{aligned}$	Changed to Repeated Multiplication $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=\underline{\mathbf{3}^{\mathbf{6}}}$ and $\frac{1}{3 \cdot 3}=\underline{\mathbf{3}^{-2}}$ to see the total number of common bases. Simplified Fractions When multiplying, ignore each $\frac{3}{3}$ because its value is $\underline{\mathbf{1}}$. Changed Back to Exponential Form The exponent $\underline{4}$ represents 3 multiplied by itself $\underline{4}$ times.
2. $\begin{aligned} \frac{4^{2}}{4^{5}} & =\frac{\not \subset \cdot \not /}{\not x \cdot 4 \cdot 4 \cdot 4 \cdot 4} \\ & =\frac{1}{4 \cdot 4 \cdot 4} \\ & =4^{-3} \end{aligned}$	Changed to Repeated Multiplication $4 \cdot 4=\underline{\mathbf{4}^{\mathbf{2}}} \text { and } 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=\underline{\mathbf{4}^{\mathbf{5}}}$ to see the total number of common bases. Simplified Fractions When multiplying, ignore each $\frac{4}{4}$ because its value is $\underline{\mathbf{1}}$. Changed Back to Exponential Form The exponent $\underline{\mathbf{- 3}}$ represents $\frac{1}{4}$ multiplied by itself $\underline{\mathbf{3}}$ times.
3. $\begin{aligned} \left(5^{-2}\right)^{3} & =5^{-2} \cdot 5^{-2} \cdot 5^{-2} \\ & =\frac{1}{5 \cdot 5} \cdot \frac{1}{5 \cdot 5} \cdot \frac{1}{5 \cdot 5} \\ & =5^{-6} \end{aligned}$	Changed to Repeated Multiplication $5^{-2} \cdot 5^{-2} \cdot 5^{-2}=\left(5^{-2}\right)^{3}$ to see the total number of common bases. Changed Negative Exponents to Division $\text { Each } \frac{1}{5 \cdot 5}=\underline{\mathbf{5}^{-2}} .$ Changed Back to Exponential Form The exponent - $\mathbf{6}$ represents $\frac{1}{5}$ multiplied by itself $\underline{\mathbf{6}}$ times.

Session 2: Self-Reflection

Algebra 1 - Readiness Standard 4 - 8.EE. 1

Learning Target: I will simplify numerical expressions with integer exponents

Briefly discuss student responses
$>$ What did I learn today about simplifying numerical expressions with integer exponents?
> How confident do I feel about simplifying numerical expressions on my own? (Thumbs up, down, or sideways)

Algebra 1 Quick Check - Form B

Readiness Standard 4-8.EE. 1

Name \qquad Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

\qquad
\qquad

Learning Target: I will simplify numerical expressions with integer exponents

Algebra 1 - Readiness Standard 4-8.EE. 1 -
Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 3: Guided Practice (Whole Group)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

1. $\begin{aligned} 4^{5} \times 4^{2} & =4 \bullet 4 \cdot 4 \cdot 4 \bullet 4 \times 4 \cdot 4 \\ & =4^{7} \end{aligned}$ 2. $\begin{aligned} 7^{3} \cdot 7^{5} & =7 \cdot 7 \\ & =7^{8} \end{aligned}$	Multiplying Powers Property ($4^{5}, 4^{2}, 7^{3}$ and 7^{5} are called powers) To multiply powers with the same bases, \qquad the exponents. $\begin{aligned} & 4^{5} \cdot 4^{2}=\square=4^{7} \\ & 7^{3} \cdot 7^{5}=\square=7^{8} \end{aligned}$
3. $\begin{aligned} \frac{5^{6}}{5^{2}} & =\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{\boxed{5 \cdot 7}} \\ & =5^{4} \end{aligned}$ 4. $\begin{aligned} \frac{8^{3}}{8^{5}} & =\frac{\not 8 \cdot 8 \cdot 8}{\not 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8} \\ & =8^{-2} \end{aligned}$	Dividing Powers Property ($5^{6}, 5^{2}, 8^{3}$ and 8^{5} are each called powers) To divide powers with the same bases, \qquad the exponents. $\begin{aligned} & \frac{5^{6}}{5^{2}}=\square=5^{4} \\ & \frac{8^{3}}{8^{5}}=\square=8^{-3} \end{aligned}$
5. $\begin{aligned} \left(9^{2}\right)^{3} & =9^{2} \cdot 9^{2} \cdot 9^{2} \\ & =9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \\ & =9^{6} \end{aligned}$ 6. $\begin{aligned} \left(3^{4}\right)^{2} & =3^{4} \cdot 3^{4} \\ & =3 \cdot 3 \\ & =3^{8} \end{aligned}$	Power of a Power Property (9^{2} and 3^{4} are called a powers) To find the power of a power, \qquad the exponents. $\begin{aligned} & \left(9^{2}\right)^{3}=\ldots=9^{6} \\ & \left(3^{4}\right)^{2}=\ldots=3^{8} \end{aligned}$

\qquad
\qquad

Learning Target: I will simplify numerical expressions with integer exponents

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 3: Guided Practice (Pairs)

Directions: Complete the missing steps to simplify each expression in exponential form.

7. $\begin{gathered} 6^{7} \times 6^{-3} \\ \frac{6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6}{6^{\square}} \end{gathered}$ Multiplying Powers Property:	8. $3^{-6} \cdot 3^{2}$ $\overline{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}$ 3 \square Multiplying Powers Property:
9. $\begin{gathered} \frac{5^{4}}{5^{7}} \\ 5 \cdot 5 \cdot 5 \cdot 5 \\ \hline 5 \square \end{gathered}$ Dividing Powers Property: $5^{\square}=5^{\square}$	10. $\frac{8^{4}}{8^{4}}$ 8 \square Dividing Powers Property: $8^{\square}=8^{\square}$
11. $\left(9^{3}\right)^{4}$ Power of a Power Property: $9^{\square}=9^{\square}$	12. $\left(3^{-4}\right)^{2}$ Power of a Power Property: $3^{\square}=3^{\square}$

\qquad
\qquad

Learning Target: I will simplify numerical expressions with integer exponents

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 3: Guided Practice (Teacher Notes)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

$$
\text { 1. } \quad \begin{aligned}
4^{5} \times 4^{2} & =4 \bullet 4 \bullet 4 \bullet 4 \bullet 4 \times 4 \bullet 4 \\
& =4^{7}
\end{aligned}
$$

Multiplying Powers Property

($4^{5}, 4^{2}, 7^{3}$ and 7^{5} are called powers)
To multiply powers with the same bases, add the exponents.
2. $7^{3} \cdot 7^{5}=7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$

$$
=7^{8}
$$

$$
\begin{aligned}
& 4^{5} \cdot 4^{2}=\underline{4^{5+2}}=4^{7} \\
& 7^{3} \cdot 7^{5}=\underline{7^{3+5}}=7^{8}
\end{aligned}
$$

3. $\quad \begin{aligned} \frac{5^{6}}{5^{2}} & =\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{\not 5 \cdot 75} \\ & =5^{4}\end{aligned}$

Dividing Powers Property

($5^{6}, 5^{2}, 8^{3}$ and 8^{5} are each called powers)
To divide powers with the same bases, subtract the exponents.
4. $\quad \frac{8^{3}}{8^{5}}=\frac{\not 8 \cdot 8 \cdot 8}{8 \cdot \not 8 \cdot 8 \cdot 8 \cdot 8}$

$$
=8^{-2}
$$

$$
\begin{aligned}
& \frac{5^{6}}{5^{2}}=\underline{5^{6-2}}=5^{4} \\
& \frac{8^{3}}{8^{5}}=\underline{\mathbf{8}^{3-5}}=8^{-3}
\end{aligned}
$$

5. $\quad\left(9^{2}\right)^{3}=9^{2} \cdot 9^{2} \cdot 9^{2}$

$$
\begin{aligned}
& =9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \\
& =9^{6}
\end{aligned}
$$

6. $\left(3^{4}\right)^{2}=3^{4} \cdot 3^{4}$

$$
\begin{aligned}
& =3 \cdot 3 \\
& =3^{8}
\end{aligned}
$$

Power of a Power Property

(9 9^{2} and 3^{4} are called a powers)
To find the power of a power, multiply the exponents.

$$
\begin{aligned}
& \left(9^{2}\right)^{3}=\underline{9^{2 \cdot 3}}=9^{6} \\
& \left(3^{4}\right)^{2}=\underline{3^{4 \cdot 2}}=3^{8}
\end{aligned}
$$

Session 3: Self-Reflection

Algebra 1 - Readiness Standard 4 - 8.EE. 1

Learning Target: I will simplify numerical expressions with integer exponents

Briefly discuss student responses
$>$ What did I learn today about simplifying numerical expressions with integer exponents?
> How confident do I feel about simplifying numerical expressions on my own? (Thumbs up, down, or sideways)

Algebra 1 Quick Check - Form C

Readiness Standard 4-8.EE. 1

Name

Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

\qquad
\qquad

Learning Target: I will simplify numerical expressions with integer exponents

Algebra 1 - Readiness Standard 4-8.EE. 1

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 4: Guided Practice (Whole Group)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

```
1. \(3^{6} \times 3^{2}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \times 3 \cdot 3\)
\[
=3^{8}
\]
```


Multiplying Powers Property
 ($3^{6}, 3^{2}, 9^{4}$ and 9^{3} are called powers)

To multiply powers with the same bases,
\qquad the exponents.
2. $9^{3} \cdot 9^{4}=9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9$

$$
=9^{7}
$$

$$
\begin{aligned}
& 3^{6} \cdot 3^{2}=\square=3^{8} \\
& 9^{3} \cdot 9^{4}=\square=9^{7}
\end{aligned}
$$

Dividing Powers Property

($4^{5}, 4^{2}, 7^{2}$ and 7^{5} are each called powers)
To divide powers with the same bases,
\qquad the exponents.
4.

$$
=4^{3}
$$

$$
\begin{aligned}
\frac{7^{2}}{7^{5}} & =\frac{7 \cdot 7}{7 \cdot 7 \cdot 7 \cdot 7 \cdot 7} \\
& =7^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4^{5}}{4^{2}}=\ldots=4^{3} \\
& \frac{7^{2}}{7^{5}}=\square=7^{-3}
\end{aligned}
$$

5. $\quad\left(5^{2}\right)^{4}=5^{2} \cdot 5^{2} \cdot 5^{2} \cdot 5^{2}$

$$
=5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5
$$

Power of a Power Property

(5^{2} and 8^{3} are called a powers)
To find the power of a power,

$$
=5^{8}
$$

\qquad the exponents.
6. $\left(8^{3}\right)^{2}=8^{3} \cdot 8^{3}$

$$
\begin{aligned}
& =8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \\
& =8^{6}
\end{aligned}
$$

Name \qquad Date \qquad

Learning Target: I will simplify numerical expressions with integer exponents

Algebra 1 - Readiness Standard 4 - 8.EE. 1

Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 4: Guided Practice (Pairs)

Directions: Simplify each expression using repeated multiplication and using the power properties.

\qquad
\qquad

Learning Target: I will simplify numerical expressions with integer exponents

Algebra 1 - Readiness Standard 4 - 8.EE. 1 -
Readiness for finding equivalent numerical expressions using square roots and cube roots

Session 4: Guided Practice (Teacher Notes)

Directions: Below are solved problems to simplify expressions with exponents. For each solution step, discuss what happened and fill in the missing information.

1. $\begin{aligned} 3^{6} \times 3^{2} & =3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \times 3 \cdot 3 \\ & =3^{8} \end{aligned}$ 2. $\begin{aligned} 9^{3} \cdot 9^{4} & =9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \\ & =9^{7} \end{aligned}$	Multiplying Powers Property ($3^{6}, 3^{2}, 9^{4}$ and 9^{3} are called powers) To multiply powers with the same bases, add the exponents. $\begin{aligned} & 3^{6} \cdot 3^{2}=\underline{\mathbf{3}^{\mathbf{6 + 2}}}=3^{8} \\ & 9^{3} \cdot 9^{4}=\underline{\mathbf{9}^{3+4}}=9^{7} \end{aligned}$
3. $\begin{aligned} \frac{4^{5}}{4^{2}} & =\frac{\not \subset \not \subset \cdot 4 \cdot 4 \cdot 4}{\notin \cdot \nexists} \\ & =4^{3} \end{aligned}$ 4. $\begin{aligned} \frac{7^{2}}{7^{5}} & =\frac{7 \cdot 7}{\not \cdot 7 \cdot 7 \cdot 7 \cdot 7} \\ & =7^{-3} \end{aligned}$	Dividing Powers Property ($4^{5}, 4^{2}, 7^{2}$ and 7^{5} are each called powers) To dividing powers with the same bases, subtract the exponents. $\begin{aligned} & \frac{4^{5}}{4^{2}}=\underline{4^{5-2}}=4^{3} \\ & \frac{7^{2}}{7^{5}}=\underline{7^{2-5}}=7^{-3} \end{aligned}$
5. $\begin{aligned} \left(5^{2}\right)^{4} & =5^{2} \cdot 5^{2} \cdot 5^{2} \cdot 5^{2} \\ & =5 \cdot 5 \\ & =5^{8} \end{aligned}$ 6. $\begin{aligned} \left(8^{3}\right)^{2} & =8^{3} \cdot 8^{3} \\ & =8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \\ & =8^{6} \end{aligned}$	Power of a Power Property (5^{2} and 8^{3} are called a powers) To find the power of a power, multiply the exponents. $\begin{aligned} & \left(5^{2}\right)^{4}=\underline{\mathbf{5}^{2 \cdot 4}}=5^{8} \\ & \left(8^{3}\right)^{2}=\underline{\mathbf{8}^{3 \cdot 2}}=8^{6} \end{aligned}$

Session 4: Self-Reflection

Algebra 1 - Readiness Standard 4 - 8.EE. 1

Learning Target: I will simplify numerical expressions with integer exponents

Briefly discuss student responses
$>$ What did I learn today about simplifying numerical expressions with integer exponents?
> How confident do I feel about simplifying numerical expressions on my own? (Thumbs up, down, or sideways)

Algebra 1 Quick Check - Form D

Readiness Standard 4-8.EE. 1

Name

Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

Readiness Standard 4-8.EE. 1

Name

Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

Readiness Standard 4-8.EE. 1

Name \qquad Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

Algebra 1 Quick Check - Form G

Readiness Standard 4-8.EE.1

Name

Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1. \& $$
6^{3}
$$
$$
12^{10}
$$ \& 6^{5}

367 \& 6^{10} \& $2 . \begin{array}{rr} \\ \\ \\ & \\ & \\ \end{array}$ \& 2^{7}
4^{10} \& 2^{4}

$4{ }^{21}$ \& 2^{11}

\hline 3. \& \& \& \& 4. \& \& \&

\hline \multicolumn{4}{|c|}{$$
\frac{5^{12}}{5^{4}}
$$} \& \multicolumn{4}{|c|}{\[

\frac{4^{5}}{4^{12}}
\]}

\hline 5^{-8} \& 5^{8} \& 1^{3} \& 5^{-3} \& 4^{10} \& 1^{-3} \& 4^{-7} \& 4^{-10}

\hline 5. \& \& \& \& 6. \& \& \&

\hline \multicolumn{4}{|c|}{$\left(8^{2}\right)^{10}$} \& \multicolumn{4}{|c|}{$\left(6^{5}\right)^{3}$}

\hline 8^{-8} \& 8^{12} \& 8^{20} \& 8^{5} \& 6^{6} \& 6^{3} \& 6^{15} \& 6^{27}

\hline
\end{tabular}

Algebra 1 Quick Check - Form H

Readiness Standard 4-8.EE.1

Name

Date \qquad

Learning Target: I will find equivalent numerical expressions using properties of integer exponents.

Directions: Circle the equivalent expression for each problem. (Work time: 3 minutes)

