\qquad
Learning Target: I will find the equation of a line.

1. We Do Together/Reflect

a. Calculate the slope (m) and y -intercept (b) of the line that contains the two points: $(-3,2)$ and $(6,8)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$\mathrm{m}=$
\square
$\square=\mathbf{b}$

2. You Do Together

a. Find the equation of the line that contains the two points: $(-6,-4)$ and $(3,-1)$

Slope $(\mathrm{m})=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Solve for the y-intercept (\mathbf{b})

$$
y=m \cdot x+\mathbf{b}
$$

$$
y=\square x+\square
$$

b. Find the equation of the line using the two points represented in the table.

\boldsymbol{x}	\boldsymbol{y}
-2	9
-1	7
0	5
$\mathbf{1}$	$\mathbf{3}$
$\mathbf{2}$	$\mathbf{1}$

$$
y=\square x+\square
$$

c. Find the equation of the line using two of the points represented in the graph.

$$
y=\square x+\square
$$

Note: Slope can be referred to as rate of change and the y-intercept can be referred to as the initial value.

Learning Target: I will find the equation of a line.

1. We Do Together/Reflect

a. Calculate the slope (m) and y -intercept (b) of the line that contains the two points: $(-\mathbf{8}, \mathbf{- 1})$ and $(\mathbf{4}, \mathbf{8})$
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Solve for the y-intercept
$y=m \cdot x+\mathbf{b}$
$8=\square \cdot 4+b$

$m=$

\square
b. Verify the calculated slope and y-intercept using two points represented from the table and graph.

c. Complete the equation of the line.

2. You Do Together

a. Find the equation of the line that contains the two points: $(-6,-8)$ and ($0,-4$)

Slope $(\mathrm{m})=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Solve for the y-intercept (b)

$$
y=m \cdot x+\mathbf{b}
$$

$$
y=\square x+\square
$$

b. Find the equation of the line using the two points represented in the table.

x	y
-2	-8
-1	-6
0	-4
$\mathbf{1}$	$-\mathbf{2}$
2	0

c. Find the equation of the line using two of the points represented in the graph.

$y=\square x+\square$

Note: Slope can be referred to as rate of change and the y-intercept can be referred to as the initial value.
\qquad

Learning Target: I will find the equation of a line.

1. We Do Together/Reflect

a. Calculate the slope (m) and y -intercept (b) of the line that contains the two points: $(\mathbf{- 1 0}, \mathbf{- 1})$ and $(\mathbf{- 5}, \mathbf{1})$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Solve for the \boldsymbol{y}-intercept
$y=m \cdot x+\mathbf{b}$
$1=\square \cdot-5+b$

m =
\square

2. You Do Together

a. Find the equation of the line that contains the two points: $(-3,-6)$ and ($3,-4$)

Slope $(\mathrm{m})=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Solve for the y-intercept (b)

$$
y=m \cdot x+\mathbf{b}
$$

$$
y=\square x+\square
$$

b. Find the equation of the line using the two points represented in the table.

x	y
-2	16
-1	$\mathbf{1 2}$
0	8
1	4
2	0

$$
y=\square x+\square
$$

c. Find the equation of the line using the two points represented in the graph.

$$
y=\square x+\square
$$

c. Complete the equation of the line.

$$
y=\square_{\text {Slope }} x+\square_{y \text {-intercept }}
$$

Note: Slope can be referred to as rate of change and the y-intercept can be referred to as the initial value.

