\qquad

Learning Target: I will solve non-linear equations.

Form A

Directions: Apply the meaning of exponents to solve each non-linear equation.

1. We Do Together

a. $\begin{aligned} x^{2} & =81 \\ \sqrt{x^{2}} & =\sqrt{81} \end{aligned}$ $\sqrt{x \bullet x}=\sqrt{\square}$ $x= \pm$	b. $\begin{gathered} x^{3}=-64 \\ \sqrt[3]{x^{3}}=\sqrt[3]{-64} \\ \sqrt{x \cdot x \cdot x}=\sqrt{\square \cdot \square \bullet \square} \\ x= \\ \end{gathered}$	c. $\begin{gathered} x^{2}=\frac{9}{25} \\ \sqrt{x^{2}}=\sqrt{\frac{\square}{\square}} \\ \sqrt{x \cdot x}=\sqrt{\square} \cdot \frac{\square}{\square} \\ \\ \text { or } \sqrt{-\frac{\square}{\square}} \sqrt{\square} \\ x= \pm \frac{\square}{\square} \end{gathered}$

2. Reflect: What questions do you have about solving each non-linear equations?
3. You Do Together

a.	$x^{2}=49$		

\qquad

Learning Target: I will solve non-linear equations.

Form B

Directions: Apply the meaning of exponents to solve each non-linear equation.

1. We Do Together

a. $\begin{aligned} x^{2} & =64 \\ \sqrt{x^{2}} & =\sqrt{64} \\ \sqrt{x \cdot x} & =\sqrt{\square} \bullet \square \\ & \text { or } \sqrt{\square} \bullet \square \\ x & = \pm \square \end{aligned}$	b. $\begin{gathered} x^{3}=-125 \\ \sqrt[3]{x^{3}}=\sqrt[3]{-125} \end{gathered}$ $\sqrt{x \cdot x \cdot x}=\sqrt{\square \bullet \square \bullet \square}$ $x=$	C. $\begin{aligned} & x^{2}=\frac{49}{121} \\ & \sqrt{x^{2}}=\sqrt{\frac{\square}{\square}} \\ & \sqrt{x \cdot x}=\sqrt{\square} \\ & \text { or } \\ & x= \pm \frac{\square}{\square} \\ & x \end{aligned}$

2. Reflect: What questions do you have about solving each non-linear equations?
3. You Do Together

| a. | b. |
| :--- | :--- | :--- |
| $x^{2}=25$ | $x^{3}=8$ |
| $x^{2}=\frac{81}{100}$ | |

\qquad

Learning Target: I will solve non-linear equations.
Form C

Directions: Apply the meaning of exponents to solve each non-linear equation.

1. We Do Together

a. $\begin{aligned} x^{2} & =36 \\ \sqrt{x^{2}} & =\sqrt{36} \\ \sqrt{x \cdot x} & =\sqrt{\square} \cdot \square \\ & \text { or } \sqrt{\square} \bullet \square \\ x & = \pm \end{aligned}$	b. $\begin{aligned} x^{3} & =-216 \\ \sqrt[3]{x^{3}} & =\sqrt[3]{-216} \\ \sqrt{x \cdot x \cdot x} & =\sqrt{\square \cdot \square \bullet \square} \\ x & =\square \end{aligned}$	c. $\begin{gathered} x^{2}=\frac{121}{144} \\ \sqrt{x^{2}}=\sqrt{\frac{\square}{\square}} \\ \sqrt{x \cdot x}=\sqrt{\square} \cdot \frac{\square}{\square} \\ \\ \text { or } \sqrt{-\frac{\square}{\square} \bullet-\frac{\square}{\square}} \\ x= \pm \frac{\square}{\square} \end{gathered}$

2. Reflect: What questions do you have about solving each non-linear equations?
3. You Do Together

a.		

